Zero-order Markov processes with multiple final sequences of states
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2023), pp. 110-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

A zero-order Markov process with multiple final sequences of states represents a stochastic system with independent transitions that stops its evolution as soon as one of the given final sequences of states is reached. The transition time of the system is unitary and the transition probability depends only on the destination state. It is proved that the distribution of the evolution time is a homogeneous linear recurrent sequence and a polynomial algorithm to determine the initial state and the generating vector of this recurrence is developed. Using the generating function, the main probabilistic characteristics are determined.
@article{BASM_2023_2_a9,
     author = {Alexandru Lazari},
     title = {Zero-order {Markov} processes with multiple final sequences of states},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {110--115},
     publisher = {mathdoc},
     number = {2},
     year = {2023},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a9/}
}
TY  - JOUR
AU  - Alexandru Lazari
TI  - Zero-order Markov processes with multiple final sequences of states
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2023
SP  - 110
EP  - 115
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a9/
LA  - en
ID  - BASM_2023_2_a9
ER  - 
%0 Journal Article
%A Alexandru Lazari
%T Zero-order Markov processes with multiple final sequences of states
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2023
%P 110-115
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a9/
%G en
%F BASM_2023_2_a9
Alexandru Lazari. Zero-order Markov processes with multiple final sequences of states. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2023), pp. 110-115. https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a9/

[1] Lazari A., “Stochastic Games on Markov Processes with Final Sequence of States”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2017, no. 1(83), 77–94 | MR | Zbl

[2] Lazari A., “Evolution Time of Composed Stochastic Systems with Final Sequence of States and Independent Transitions”, An. Ştiinţ. Univ. Al.I. Cuza Iaşi. Mat. (N.S.), LXII:1 (2016), 257–274 | MR | Zbl

[3] Lazari A., Lozovanu D., Capcelea M., Dynamical deterministic and stochastic systems: Evolution, optimization and discrete optimal control, CEP USM, Chişinău, 2015, 310 pp. (in Romanian)

[4] Lazari A., “Determining the Distribution of the Duration of Stationary Games for Zero-Order Markov Processes with Final Sequence of States”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2015, no. 3(79), 72–78 | MR | Zbl

[5] Lazari A., “Determining the Optimal Evolution Time for Markov Processes with Final Sequence of States”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2015, no. 1(77), 115–126 | MR | Zbl

[6] Lazari A., “Optimization of Zero-Order Markov Processes with Final Sequence of States”, Universal Journal of Applied Mathematics, 1:3 (2013), 198–206 | DOI

[7] Lazari A., “Compositions of stochastic systems with final sequence states and interdependent transitions”, Ann. Univ. Buchar. Math. Ser., 4 (LXII):1 (2013), 289–303 | MR | Zbl

[8] Zbaganu G., “Waiting for an ape to type a poem”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 1992, no. 2(8), 66–74 | MR | Zbl

[9] Guibas Leo J., Odlyzko Andrew M., “Periods in Strings”, J. Combin. Theory. Ser. A, 30 (1981), 19–42 | DOI | MR | Zbl