Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2023_2_a6, author = {L. R. Dreglea Sidorov and N. Sidorov and D. Sidorov}, title = {The linear {Fredholm} integral equations with functionals and parameters}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {83--91}, publisher = {mathdoc}, number = {2}, year = {2023}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a6/} }
TY - JOUR AU - L. R. Dreglea Sidorov AU - N. Sidorov AU - D. Sidorov TI - The linear Fredholm integral equations with functionals and parameters JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2023 SP - 83 EP - 91 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a6/ LA - ru ID - BASM_2023_2_a6 ER -
%0 Journal Article %A L. R. Dreglea Sidorov %A N. Sidorov %A D. Sidorov %T The linear Fredholm integral equations with functionals and parameters %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2023 %P 83-91 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a6/ %G ru %F BASM_2023_2_a6
L. R. Dreglea Sidorov; N. Sidorov; D. Sidorov. The linear Fredholm integral equations with functionals and parameters. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2023), pp. 83-91. https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a6/
[1] Azbelev N. V., Su L. M., Ragimhanov R. K., “Defining the concept of a solution to an integral equation with discontinuous operator”, Sov. Math., Dokl., 7 (1966), 1437–1440 | MR | Zbl
[2] Khromov A. P., “Integral operators with kernels that are discontinuous on broken lines”, Mat. Sb., 197:11 (2006), 115–142 | DOI | MR | Zbl
[3] Nakhushev A. M., Loaded equations and their applications, Nauka Publ, M., 2012 (in Russian)
[4] Sidorov N., Sidorov D., Sinitsyn A., Toward General Theory of Differential – Operator and Kinetic Models, World Scientific Series on Nonlinear Science. Series A, 97, 2020 | DOI | MR | Zbl
[5] Sidorov D., Integral Dynamical Models: Singularities, Signals and Control, World Scientific Series on Nonlinear Science. Series A, 87, 2014 | DOI | MR
[6] Dreglea A. I., Sidorov N. A., “Integral equations in identification of external force and heat source density dynamics”, Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, 2018, no. 3(88), 68–77 | MR | Zbl
[7] Vainberg M. M., Trenogin V. A., Theory of branching of solutions of nonlinear equations, Wolters-Noordhoff B. V., Groningen, 1964, 510 pp. | MR
[8] Sidorov D. N., “On parametric families of solutions of Volterra integral equations of the first kind with piecewise smooth kernel”, Differential Equations, 49:2 (2013), 210–216 | DOI | MR | Zbl
[9] Sidorov N. A., Sidorov D. N., “On the Solvability of a Class of Volterra Operator Equations of the First Kind with Piecewise Continuous Kernels”, Math. Notes, 96:5 (2014), 811–826 | DOI | MR | Zbl
[10] Sidorov N. A., Sidorov D. N., “Branching Solutions of the Cauchy Problem for Nonlinear Loaded Differential Equations with Bifurcation Parameters”, Mathematics, 10:12 (2022), 2134 | DOI | MR
[11] Baltaeva I. I., Rakhimov I. D., Khasanov M. M., “Exact Traveling Wave Solutions of the Loaded Modified Korteweg-de Vries Equation”, Bul. of Irkutsk State University. Series Mathematics, 41 (2022), 85–95 | DOI | MR | Zbl
[12] Chadam J. M., Peirce A., Yin H. M., “The blowup property of solutions to some diffusion equations with localized nonlinear reactions”, Journal of Mathematical Analysis and Applications, 169:2 (1992), 313–328 | DOI | MR | Zbl
[13] Sidorov, N. A., Sidorov, D. N., “Nonlinear Volterra Equations with Loads and Bifurcation Parameters: Existence Theorems and Construction of Solutions”, Differential Equations, 57 (2021), 1640–1651 | DOI | MR | Zbl
[14] Sidorov N. A., Dreglea Sidorov L. R. D., “On the solution of Hammerstein integral equations with loads and bifurcation parameters”, Bulletin of the Irkutsk State University. Series Mathematics, 43 (2023), 78–90 | DOI | MR | Zbl
[15] Sidorov N. A., Dreglea Sidorov L. R. D., “On Bifurcation Points of the Solution of the Hammerstein Integral Equation with Loads”, Dynamical Systems and Computer Science: Theory and Applications, DYSC 2022, Proceedings of the 4th International Conference (Irkutsk, September 19–22, 2022), 41–44 (in Russian) | MR | Zbl
[16] Lample B. P., Rosenwasser E. N., “Using the Fredholm resolvent for computing the $H_2$-norm of linear periodic systems”, International Journal of Control, 83:96 (2010), 1868–1884 | DOI | MR
[17] Kolmogorov A. N., Fomin S. N., Elements of the Theory of Functions and Functional Analysis, Dover Publications Inc., 1999 | MR
[18] Fredholm E. I., “Sur une nouvelle method pour la resolution du probleme de Direchlet”, Kong. Vetenskaps-Akademiens FBRH, Stockholm, 1900, 39–46 (in French)
[19] Loginov B. V., Sidorov N. A., “Group symmetry of the Lyapunov–Schmidt branching equation and iterative methods in the problem of a bifurcation point”, Mathematics of the USSR - Sbornik, 73:1 (1991), 67–77 | DOI | MR