Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2023_2_a5, author = {David Cheban}, title = {Global asymptotic stability of generalized homogeneous dynamical systems}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {52--82}, publisher = {mathdoc}, number = {2}, year = {2023}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a5/} }
TY - JOUR AU - David Cheban TI - Global asymptotic stability of generalized homogeneous dynamical systems JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2023 SP - 52 EP - 82 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a5/ LA - en ID - BASM_2023_2_a5 ER -
David Cheban. Global asymptotic stability of generalized homogeneous dynamical systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2023), pp. 52-82. https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a5/
[1] Artstein Z., “Uniform Asymptotic Stability via the Limiting Equations”, Journal of Differential Equations, 27:2 (1978), 172–189 | DOI | MR | Zbl
[2] A. Bacciotti, L. Rosier, Liapunov Functions and Stability in Control Theory, Springer-Verlag, Berlin–Heidelberg, 2005, xiii+236 pp. | MR | Zbl
[3] Bebutov V. M., “On the shift dynamical systems on the space of continuous functions”, Bull. of Inst. of Math. of Moscow University, 2:5 (1940), 1–65 (in Russian)
[4] Extensions of Minimal Transformation Group, Sijthoff Noordhoff, Alphen aan den Rijn, The Netherlands Germantown, Maryland USA, 1979 | MR
[5] Mathematical Notes, 63:1 (1998), 115–126 | DOI | MR | Zbl
[6] Cheban D. N., Lyapunov Stability of Non-Autonomous Dynamical Systems, Nova Science Publishers Inc, New York, 2013, xii+275 pp.
[7] Cheban D. N., Global Attractors of Nonautonomous Dynamical and Control Systems, Interdisciplinary Mathematical Sciences, 18, 2nd Edition, World Scientific, River Edge, NJ, 2015, xxv+589 pp. | DOI | MR
[8] D. N. Cheban, Nonautonomous Dynamics: Nonlinear oscillations and Global attractors, Springer Nature Switzerland AG, 2020, xxii+434 pp. | MR | Zbl
[9] M'Closkey R. T., Murray R. M., “Extending Exponential Stabilizers for nonholonomic systems from Kinematic Controllers to Dynamic Controllers”, Preprints of the Fourth IFAC Symposium on Robot Control, 1994, 243–248
[10] Efimov D., Perruquetti M., Richard J.-P., “Development of Homogeneity Concept for Time-Delay Systems”, SIAM J. Control Optim., 52:3 (2014), 1547–1566 | DOI | MR | Zbl
[11] M. Gil, Difference Equations in Normed Spaces. Stability and Oscilations, North-Holland, Elsevier, 2007, xxii+362 pp. | MR
[12] W. Hahn, Stability of Motion, Springer-Verlag, Berlin–Heidelberg–New York, 1967, xi+446 pp. | MR | Zbl
[13] Kawski M., “Geometric Homogeneity and Stabilization”, IFAC Proceedings Volumes, 28:14 (1995), 147–152 | DOI
[14] Lakshmikanthan V., Donato Trigiante, Theory of Difference Equations: Numerical Methods and Applications, Marcel Dekker, Inc., New York–Basel, 2002, x+299 pp. | MR
[15] Almost Periodic Functions and Differential Equations, Cambridge University Press, Cambridge, 1982, xi+211 pp. | MR | MR | Zbl | Zbl
[16] A. Polyakov, Generalized Homogeneity in Systems and Control, Springer Nature Switzerland AG, 2020, xviii+447 pp. | MR | Zbl
[17] J.-B. Pomet, C. Samson, Time-varying exponential stabilization of nonholonomic systems in power form, Research Report RR-2126, ffinria-00074546v2ff, INRIA, 1993, 27 pp.
[18] Rosier L., Etude de quelques problemes de stabilisation, PhD Thesis, Ecole Normale Supérieure de Cachan (France), 1993
[19] Sell G. R., “Non-Autonomous Differential Equations and Topological Dynamics. II. Limiting equations”, Trans. Amer. Math. Soc., 127 (1967), 263–283 | DOI | MR | Zbl
[20] Sell G. R., Lectures on Topological Dynamics and Differential Equations, Van Nostrand Reinhold math. studies, 2, Van Nostrand-Reinbold, London, 1971 | MR
[21] Shcherbakov B. A., Topologic Dynamics and Poisson Stability of Solutions of Differential Equations, Shtiintsa, Kishinev, 1972, 231 pp. (in Russian) | MR
[22] Shcherbakov B. A., Poisson Stability of Motions of Dynamical Systems and Solutions of Differential Equations, Shtiintsa, Kishinev, 1985, 147 pp. (in Russian) | MR | Zbl
[23] Introduction to Topological Dynamics, Noordhoff, Leiden, 1975, ix+163 pp. | MR | MR | Zbl
[24] Methods of A. M. Lyapunov and Their Applications, United States, Atomic Energy Commission, Groningen, 1964 | MR | MR