Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2023_2_a4, author = {Dmitrii Lozovanu and Stefan Pickl}, title = {On the {Existence} of {Stationary} {Nash} {Equilibria} for {Mean} {Payoff} {Games} on {Graphs}}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {41--51}, publisher = {mathdoc}, number = {2}, year = {2023}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a4/} }
TY - JOUR AU - Dmitrii Lozovanu AU - Stefan Pickl TI - On the Existence of Stationary Nash Equilibria for Mean Payoff Games on Graphs JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2023 SP - 41 EP - 51 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a4/ LA - ru ID - BASM_2023_2_a4 ER -
%0 Journal Article %A Dmitrii Lozovanu %A Stefan Pickl %T On the Existence of Stationary Nash Equilibria for Mean Payoff Games on Graphs %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2023 %P 41-51 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a4/ %G ru %F BASM_2023_2_a4
Dmitrii Lozovanu; Stefan Pickl. On the Existence of Stationary Nash Equilibria for Mean Payoff Games on Graphs. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2023), pp. 41-51. https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a4/
[1] Alpern S., “Cycles in extensive form perfect information games”, J. Math. Anal. Appl., 159 (1991), 1–17 | DOI | MR | Zbl
[2] Dasgupta P., Maskin E., “The existence of an equilibrium in discontinuous economic games”, The Review of Economic Studies, 53 (1986), 1–26 | DOI | MR | Zbl
[3] Ehrenfeucht A., Mycielski J., “Positional strategies for mean payoff games”, Int. J. Game Theory, 8 (1979), 109–113 | DOI | MR | Zbl
[4] Flesch J., Thuijsman F., Vrieze K., “Cyclic Markov equilibria in stochastic games”, International Journal of Game Theory, 26 (1997), 303–314 | DOI | MR | Zbl
[5] Gurvich V., Karzanov A., Khachiyan L., “Cyclic games and an algorithm to find minimax cycle means in directed graphs”, USSR Comput. Math. Math. Phis., 28 (1988), 85–91 | DOI | MR | Zbl
[6] Karzanov A., Lebedev V., “Cyclic games with prohibitions”, Mathematical Programming, 60 (1993), 277–293 | DOI | MR | Zbl
[7] Lozovanu D., “Pure and mixed stationary equilibria for average stochastic games”, Static amd Dynamic Game Theory: Foundations and Applications, Chapter 8, eds. Petrosyan L., Mazalov V., Zenkevich N., Springer, 2019, 131–155 | DOI | MR
[8] Lozovanu D., “Stationary Nash equilibria for average stochastic positional games”, Static amd Dynamic Game Theory: Foundations and Applications, Chapter 9, eds. Petrosyan L., Mazalov V., Zenkevich N., Springer, 2018, 139–163 | DOI | MR
[9] Lozovanu D., Pickl S., “Determining the optimal strategies for zero-sum average stochastic positional games”, Electronic Notes in Discrete Mathematics, 55 (2016), 155–159 | DOI | Zbl
[10] Lozovanu D., Pickl S., “Nash equilibria conditions for cyclic games with $m$ players”, Electronic Notes in Discrete Mathematics, 28 (2006), 85–91 | MR
[11] Zwick U., Paterson M., “The complexity of mean payoffs on graphs”, Theoretical Computer Science, 158 (1996), 343–359 | DOI | MR | Zbl