Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2023_2_a2, author = {Benharrat Bela{\"\i}di}, title = {Growth properties of solutions to higher order complex linear differential equations with analytic coefficients in the annulus}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {19--35}, publisher = {mathdoc}, number = {2}, year = {2023}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a2/} }
TY - JOUR AU - Benharrat Belaïdi TI - Growth properties of solutions to higher order complex linear differential equations with analytic coefficients in the annulus JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2023 SP - 19 EP - 35 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a2/ LA - en ID - BASM_2023_2_a2 ER -
%0 Journal Article %A Benharrat Belaïdi %T Growth properties of solutions to higher order complex linear differential equations with analytic coefficients in the annulus %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2023 %P 19-35 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a2/ %G en %F BASM_2023_2_a2
Benharrat Belaïdi. Growth properties of solutions to higher order complex linear differential equations with analytic coefficients in the annulus. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2023), pp. 19-35. https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a2/
[1] S. Axler, “Harmonic functions from a complex analysis viewpoint”, Amer. Math. Monthly, 93:4 (1986), 246–258 | DOI | MR
[2] B. Belaïdi, “Growth of solutions of complex differential equations in a sector of the unit disc”, Electron. J. Differential Equations, 2019, 98, 15 pp. | MR | Zbl
[3] A. A. Goldberg, I. V. Ostrovskii, Value distribution of meromorphic functions, Translations of Mathematical Monographs, 236, American Mathematical Society, Providence, RI, 2008 | DOI | MR | Zbl
[4] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964 | MR | Zbl
[5] J. Heittokangas, On complex differential equations in the unit disc, Ann. Acad. Sci. Fenn. Math. Diss., 122, 2000, 54 pp. | MR | Zbl
[6] A. Ya. Khrystiyanyn, A. A. Kondratyuk, “On the Nevanlinna theory for meromorphic functions on annuli. I”, Mat. Stud., 23:1 (2005), 19–30 | MR | Zbl
[7] A. Ya. Khrystiyanyn, A. A. Kondratyuk, “On the Nevanlinna theory for meromorphic functions on annuli. II”, Mat. Stud., 24:1 (2005), 57–68 | MR | Zbl
[8] A. A. Kondratyuk, I. Laine, “Meromorphic functions in multiply connected domains”, Fourier series methods in complex analysis, Univ. Joensuu Dept. Math. Rep. Ser., 10, Univ. Joensuu, Joensuu, 2006, 9–111 | MR | Zbl
[9] R. Korhonen, “Nevanlinna theory in an annulus”, Value distribution theory and related topics, Adv. Complex Anal. Appl., 3, Kluwer Acad. Publ., Boston, MA, 2004, 167–179 | MR | Zbl
[10] I. Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics, 15, Walter de Gruyter Co., Berlin, 1993 | MR
[11] J. Long, “On [p, q]-order of solutions of higher-order complex linear differential equations in an angular domain of unit disc”, J. Math. Study, 50:1 (2017), 91–100 | DOI | MR | Zbl
[12] M. Lund, Z. Ye, “Logarithmic derivatives in annuli”, J. Math. Anal. Appl., 356:2 (2009), 441–452 | DOI | MR | Zbl
[13] M. Lund, Z. Ye, “Nevanlinna theory of meromorphic functions on annuli”, Sci. China Math., 53:3 (2010), 547–554 | DOI | MR | Zbl
[14] M. Tsuji, Potential theory in modern function theory, Chelsea Publishing Co., New York, 1975 | MR | Zbl
[15] N. Wu, “On the growth order of solutions of linear differential equations in a sector of the unit disk”, Results Math., 65:1-2 (2014), 57–66 | DOI | MR | Zbl
[16] N. Wu, Z. Xuan, “On the growth of solutions to linear complex differential equations on annuli”, Bull. Korean Math. Soc., 56:2 (2019), 461–470 | MR | Zbl
[17] C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003 | MR | Zbl
[18] M. A. Zemirni, B. Belaïdi, “[p,q]-order of solutions of complex differential equations in a sector of the unit disc”, An. Univ. Craiova Ser. Mat. Inform., 45:1 (2018), 37–49 | MR | Zbl