Growth properties of solutions to higher order complex linear differential equations with analytic coefficients in the annulus
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2023), pp. 19-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, by using the Nevanlinna value distribution theory of meromorphic functions on an annulus, we deal with the growth properties of solutions of the linear differential equation f(k)+Bk1(z)f(k1)++B1(z)f+B0(z)f=0, where k2 is an integer and Bk1(z),,B1(z),B0(z) are analytic on an annulus. Under some conditions on the coefficients, we obtain some results concerning the estimates of the order and the hyper-order of solutions of the above equation. The results obtained extend and improve those of Wu and Xuan in [16].
@article{BASM_2023_2_a2,
     author = {Benharrat Bela{\"\i}di},
     title = {Growth properties of solutions to higher order complex linear differential equations with analytic coefficients in the annulus},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {19--35},
     publisher = {mathdoc},
     number = {2},
     year = {2023},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a2/}
}
TY  - JOUR
AU  - Benharrat Belaïdi
TI  - Growth properties of solutions to higher order complex linear differential equations with analytic coefficients in the annulus
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2023
SP  - 19
EP  - 35
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a2/
LA  - en
ID  - BASM_2023_2_a2
ER  - 
%0 Journal Article
%A Benharrat Belaïdi
%T Growth properties of solutions to higher order complex linear differential equations with analytic coefficients in the annulus
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2023
%P 19-35
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a2/
%G en
%F BASM_2023_2_a2
Benharrat Belaïdi. Growth properties of solutions to higher order complex linear differential equations with analytic coefficients in the annulus. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2023), pp. 19-35. https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a2/

[1] S. Axler, “Harmonic functions from a complex analysis viewpoint”, Amer. Math. Monthly, 93:4 (1986), 246–258 | DOI | MR

[2] B. Belaïdi, “Growth of solutions of complex differential equations in a sector of the unit disc”, Electron. J. Differential Equations, 2019, 98, 15 pp. | MR | Zbl

[3] A. A. Goldberg, I. V. Ostrovskii, Value distribution of meromorphic functions, Translations of Mathematical Monographs, 236, American Mathematical Society, Providence, RI, 2008 | DOI | MR | Zbl

[4] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964 | MR | Zbl

[5] J. Heittokangas, On complex differential equations in the unit disc, Ann. Acad. Sci. Fenn. Math. Diss., 122, 2000, 54 pp. | MR | Zbl

[6] A. Ya. Khrystiyanyn, A. A. Kondratyuk, “On the Nevanlinna theory for meromorphic functions on annuli. I”, Mat. Stud., 23:1 (2005), 19–30 | MR | Zbl

[7] A. Ya. Khrystiyanyn, A. A. Kondratyuk, “On the Nevanlinna theory for meromorphic functions on annuli. II”, Mat. Stud., 24:1 (2005), 57–68 | MR | Zbl

[8] A. A. Kondratyuk, I. Laine, “Meromorphic functions in multiply connected domains”, Fourier series methods in complex analysis, Univ. Joensuu Dept. Math. Rep. Ser., 10, Univ. Joensuu, Joensuu, 2006, 9–111 | MR | Zbl

[9] R. Korhonen, “Nevanlinna theory in an annulus”, Value distribution theory and related topics, Adv. Complex Anal. Appl., 3, Kluwer Acad. Publ., Boston, MA, 2004, 167–179 | MR | Zbl

[10] I. Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics, 15, Walter de Gruyter Co., Berlin, 1993 | MR

[11] J. Long, “On [p, q]-order of solutions of higher-order complex linear differential equations in an angular domain of unit disc”, J. Math. Study, 50:1 (2017), 91–100 | DOI | MR | Zbl

[12] M. Lund, Z. Ye, “Logarithmic derivatives in annuli”, J. Math. Anal. Appl., 356:2 (2009), 441–452 | DOI | MR | Zbl

[13] M. Lund, Z. Ye, “Nevanlinna theory of meromorphic functions on annuli”, Sci. China Math., 53:3 (2010), 547–554 | DOI | MR | Zbl

[14] M. Tsuji, Potential theory in modern function theory, Chelsea Publishing Co., New York, 1975 | MR | Zbl

[15] N. Wu, “On the growth order of solutions of linear differential equations in a sector of the unit disk”, Results Math., 65:1-2 (2014), 57–66 | DOI | MR | Zbl

[16] N. Wu, Z. Xuan, “On the growth of solutions to linear complex differential equations on annuli”, Bull. Korean Math. Soc., 56:2 (2019), 461–470 | MR | Zbl

[17] C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003 | MR | Zbl

[18] M. A. Zemirni, B. Belaïdi, “[p,q]-order of solutions of complex differential equations in a sector of the unit disc”, An. Univ. Craiova Ser. Mat. Inform., 45:1 (2018), 37–49 | MR | Zbl