The second Hankel determinant for k-symmetrical functions
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2023), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we find the upper bound of the second Hankel determinant |a2a4a32| for subclasses of starlike and convex functions with respect to k-symmetric points.
@article{BASM_2023_2_a0,
     author = {Fuad Alsarari and Satyanarayana Latha and Maslina Darus},
     title = {The second {Hankel} determinant for $k$-symmetrical functions},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--10},
     publisher = {mathdoc},
     number = {2},
     year = {2023},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a0/}
}
TY  - JOUR
AU  - Fuad Alsarari
AU  - Satyanarayana Latha
AU  - Maslina Darus
TI  - The second Hankel determinant for $k$-symmetrical functions
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2023
SP  - 3
EP  - 10
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a0/
LA  - en
ID  - BASM_2023_2_a0
ER  - 
%0 Journal Article
%A Fuad Alsarari
%A Satyanarayana Latha
%A Maslina Darus
%T The second Hankel determinant for $k$-symmetrical functions
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2023
%P 3-10
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a0/
%G en
%F BASM_2023_2_a0
Fuad Alsarari; Satyanarayana Latha; Maslina Darus. The second Hankel determinant for $k$-symmetrical functions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2023), pp. 3-10. https://geodesic-test.mathdoc.fr/item/BASM_2023_2_a0/

[1] F. Al-Sarari, S. Latha, B. A. Frasin, “A note on starlike functions associated with symmetric points”, Afrika Matematika, 29 (2018), 945–953 | DOI | MR | Zbl

[2] F. Al-Sarari, S. Latha, M. Darus, “A few results on Janowski functions associated with $k$-symmetric points”, Korean Journal of Mathematics, 25:3 (2017), 389–403 | MR | Zbl

[3] K. O. Babalola, “On $\mathcal{\widetilde{H}}_3(1)$ Hankel determinant for some classes of univalent functions”, Inequal. Theory Appl., 6 (2010), 1–7

[4] O. Barukab, M. Arif, M. Abbas, S. K. Khan, “Sharp bounds of the coefficient results for the family of bounded turning functions associated with petal shaped domain”, J. Function Spaces, 2021, 5535629, 9 pp. | MR | Zbl

[5] L. Cairo, J. Llibre, “Phase portraits of quadratic polynomial vector fields having a rational first integral of degree 2”, Nonlinear Analysis, 67 (2007), 327–348 | DOI | MR | Zbl

[6] J. H. Choi, Y. C. Kim, T. Sugawa, “A general approach to the Fekete-Szegö problem”, J. Math. Soc. Japan, 59:3 (2007), 707–727 | DOI | MR | Zbl

[7] P. L. Duren, “Univalent functions”, Grundlehren der Mathematschen Wissenschaften, 259, Springer, New York, NY, USA, 1983, 116 | MR

[8] R. Ehrenborg, “The Hankel determinant of exponential polynomials”, American Mathematical Monthly, 107 (2000), 557–560 | DOI | MR | Zbl

[9] M. Fekete, G. Szegö, “Eine Bemerkung über ungerade schlichte Funktionen”, J. London Math. Soc., 8 (1933), 85–89 | DOI | MR | Zbl

[10] A. W. Goodman, Univalent Functions, v. I-II, Mariner Publishing Company, Florida, USA, 1983 | MR

[11] A. Janteng, S. A. Halim, M. Darus, “Coefficient inequality for a function whose derivative has a positive real part”, J. Inequal. Pure Appl. Math., 7:2 (2006), 1–5 | MR

[12] A. Janteng, S. A. Halim, M. Darus, “Hankel Determinant for starlike and convex functions”, Int. J. Math. Anal., 13:1 (2007), 619–625 | MR | Zbl

[13] A. Janteng, S. A. Halim, M. Darus, “Hankel Determinant for functions starlike and convex with respect to symmetric points”, Journal of Quality Measurement and Analysis, 7:2 (2006), 37–43 | MR

[14] M. G. Khan, B. Ahmad, G. Murugusundaramoorthy, W. K. Mashwani, S. Yalcin, T. G. Shaba, Z. Salleh, “Third Hankel determinant and Zalcman functional for a class of starlike functions with respect to symmetric points related with sine function”, J. Math. Comp. Sci., 25 (2022), 29–36 | DOI

[15] J. W. Layman, “The Hankel transform and some of its properties”, J. Integer Sequences, 4 (2001), 1–11 | MR | Zbl

[16] M. Arif, L. Rani, M. Raza, P. Zaprawa, “Fourth hankel determinant for the family of functions with bounded turning”, Bulletin of the Korean Mathematical Society, 55:6 (2018), 1703–1711 | MR | Zbl

[17] R. J. Libera, E. J. Zlotkiewicz, “Early coefficients of the inverse of a regular convex function”, Amer. Math. Soc., 85 (1982), 225–230 | DOI | MR | Zbl

[18] R. J. Libera, E. J. Zlotkiewicz, “Coefficient bounds for the inverse of a function with derivative in $\mathcal{P}$”, Amer. Math. Soc., 87:2 (1983), 251–257 | MR | Zbl

[19] W. Ma, D. Minda, Proceedings of the Conference on complex Analysis, eds. Z. Li, F Ren, L Lang, and S. Zhang, International press, Boston, Mass, USA, 1994, 157–169 | MR | Zbl

[20] J. W. Noonan and, D. K. Thomas, “On the second Hankel determinant of a reallymean $p$-valent functions”, Trans. Amer. Math. Soc., 223:2 (1976), 337–346 | MR | Zbl

[21] K. I. Noor, “Hankel determinant problem for the class of functions with bounded boundary rotations”, Rev. Roum. Math. Pures. Et. Appl., 28:8 (1983), 731–739 | MR | Zbl

[22] S. Owa, H. Srivastava, “Univalent and starlike generalized hypergeometric functions”, Canad. J. Math., 39:5 (1987), 1057–1077 | DOI | MR | Zbl

[23] C. Pommerenke, “On the Hankel determinants of univalent functions”, Mathematika, 14 (1967), 108–112 | DOI | MR | Zbl

[24] C. Pommerenke, “On the coefficients and Hankel determinants of univalent functions”, J. Lond. Math. Soc., 41 (1966), 111–122 | DOI | MR | Zbl

[25] A. Riaz, M. Raza, D. K. Thomas, “Hankel determinants for starlike and convex functions associated with sigmoid functions”, Forum Math., 34:1 (2022), 137–156 | DOI | MR | Zbl

[26] L. Shi, M. Shutaywi, N. Alreshidi, M. Arif, S. M. Ghufran, “The Sharp Bounds of the Third-Order Hankel Determinant for Certain Analytic Functions Associated with an Eight-Shaped Domain”, Fractal and Fractional, 6 (2022), 223, 21 pp. | DOI | Zbl

[27] R. Singh, M. Tygel, “On some univalent functions in the unit disc”, Indian. J. Pure. Appl. Math., 12 (1981), 513–520 | MR | Zbl

[28] P. Zaprawa, “Third Hankel determinants for subclasses of univalent functions”, Mediterr. J. Math., 14:1 (2017), 10–19 | DOI | MR | Zbl