Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2023_1_a5, author = {Armengol Gasull and Antoni Guillamon and V{\'\i}ctor Ma\~nosa}, title = {Counting configurations of limit cycles and centers}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {78--96}, publisher = {mathdoc}, number = {1}, year = {2023}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a5/} }
TY - JOUR AU - Armengol Gasull AU - Antoni Guillamon AU - Víctor Mañosa TI - Counting configurations of limit cycles and centers JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2023 SP - 78 EP - 96 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a5/ LA - en ID - BASM_2023_1_a5 ER -
%0 Journal Article %A Armengol Gasull %A Antoni Guillamon %A Víctor Mañosa %T Counting configurations of limit cycles and centers %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2023 %P 78-96 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a5/ %G en %F BASM_2023_1_a5
Armengol Gasull; Antoni Guillamon; Víctor Mañosa. Counting configurations of limit cycles and centers. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2023), pp. 78-96. https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a5/
[1] M. J. Álvarez, B. Coll, P. De Maesschalck, R. Prohens, “Asymptotic lower bounds on Hilbert numbers using canard cycles”, J. Differential Equations, 268 (2020), 3370–3391 | DOI | MR
[2] M. J. Álvarez, A. Gasull, R. Prohens, “Topological classification of polynomial complex differential equations with all the critical points of center type”, J. Difference Equ. Appl., 16 (2010), 411–423 | DOI | MR
[3] J. C. Artés, J. Llibre, D. Schlomiuk, N. Vulpe, Geometric configurations of singularities of planar polynomial differential systems. A global classification in the quadratic case, Birkhäuser, 2021 | MR | Zbl
[4] Amer. Math. Soc. Transl., 100 (1954), 1–19 | MR | MR
[5] N. L. Biggs, E. K. Lloyd, R. Wilson, Graph Theory. 1736–1936, Oxford University Press, 1974 | MR
[6] T. R. Blows, “Center configurations of Hamiltonian cubic systems”, Rocky Mountain J. Math., 40 (2010), 1111–1122 | DOI | MR | Zbl
[7] A. Cayley, “On the analytical forms called trees, with application to the theory of chemical combinations”, Reports British Assoc. Advance. Sci, 45 (1875), 257–305; The Collected Math. Papers, v. 9, Cambridge University Press, Cambridge, 2009, 427–460 | MR
[8] L. A. Cherkas, “Dulac function for polynomial autonomous systems on a plane”, Differential Equations, 33 (1997), 692–701 | MR | Zbl
[9] C. J. Christopher, N. G. Lloyd, “Polynomial systems: A lower bound for the Hilbert numbers”, Proc. Roy. Soc. London Ser. A, 450 (1995), 219–224 | DOI | MR | Zbl
[10] A. Cima, A. Gasull, F. Mañosas, “Some applications of the Euler-{J}acobi formula to differential equations”, Proc. Amer. Math. Soc., 118 (1993), 151–163 | DOI | MR | Zbl
[11] A. Cima, A. Gasull, F. Mañosas, “On polynomial Hamiltonian planar vector fields”, J. Differential Equations, 106 (1993), 367–383 | DOI | MR | Zbl
[12] A. Cima, J. Llibre, “Configurations of fans and nests of limit cycles for polynomial vector fields in the plane”, J. Differential Equations, 82 (1989), 71–97 | DOI | MR | Zbl
[13] F. Dumortier, J. Llibre and J. C. Artés, Qualitative theory of planar differential systems, UniversiText, Springer–Verlag, New York, 2006 | MR | Zbl
[14] R. M. Fedorov, “Upper bounds for the number of orbital topological types of polynomial vector fields on the plane “modulo limit cycles””, Proc. Steklov Inst. Math., 254 (2006), 238–254 | DOI | MR | Zbl
[15] P. Flajolet, R. Sedgewick, Analytic Combinatorics, Cambridge University Press, Cambridge, 2009 | MR | Zbl
[16] A. Gasull, “Difference equations everywhere: some motivating examples”, Recent Progress in Difference Equations, Discrete Dynamical Systems and Applications, Proceedings of ICDEA 2017, Springer Proceedings in Mathematics Statistics, 2019, 129–167 | DOI | MR | Zbl
[17] A. Gasull, “Some open problems in low dimensional dynamical systems”, SeMA J., 78 (2021), 233–269 | DOI | MR | Zbl
[18] A. Gasull, H. Giacomini, “A new criterion for controlling the number of limit cycles of some generalized Liénard equations”, J. Differential Equations, 185 (2002), 54–73 | DOI | MR | Zbl
[19] A. Genitrini, “Full asymptotic expansion for Pólya structures”, Proceedings of the 27th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (Kraków, Poland, 4-8 July 2016), arXiv: 1605.00837 [math.CO] | MR
[20] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley Sons], New York, 1978 | MR | Zbl
[21] A. Guillamon, Study of some problems of qualitative theory in the plane with applications to predator-prey systems, PhD thesis, Univ. Autònoma de Barcelona, 1995 | Zbl
[22] M. Han, J. Li, “Lower bounds for the Hilbert number of polynomial systems”, J. Differential Equations, 252 (2012), 3278–3304 | DOI | MR | Zbl
[23] T. Johnson, “A quartic system with twenty-six limit cycles”, Exp. Math., 20 (2011), 323–328 | DOI | MR | Zbl
[24] T. Johnson, W. Tucker, “An improved lower bound on the number of limit cycles bifurcating from a Hamiltonian planar vector field of degree 7”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 1451–1458 | DOI | MR | Zbl
[25] A. G. Khovanskiĭ, “The index of a polynomial vector field”, Funktsional. Anal. i Prilozhen., 13 (1979), 49–58 ; 96 | DOI | MR | Zbl
[26] J. Li, “Hilbert's 16th problem and bifurcations of planar vector fields”, Inter. J. Bifur. and Chaos, 13 (2003), 47–106 | DOI | MR | Zbl
[27] J. Li, H. Chan and K. Chung, “Some lower bounds for $H(n)$ in Hilbert's 16th problem”, Qualitative Theory of Dynamical Systems, 3 (2003), 345–360 | MR
[28] H. Liang, J. Torregrosa, “Parallelization of the Lyapunov constants and cyclicity for centers of planar polynomial vector fields”, J. Differential Equations, 259 (2015), 6494–6509 | DOI | MR | Zbl
[29] J. Llibre, G. Rodríguez, “Configurations of limit cycles and planar polynomial vector fields”, J. Differential Equations, 198 (2004), 374–380 | DOI | MR | Zbl
[30] N. G. Lloyd, “A note on the number of limit cycles in certain two-dimensional systems”, J. London Math. Soc. (2), 20 (1979), 277–286 | DOI | MR | Zbl
[31] J. Margalef-Bentabol, D. Peralta-Salas, “Realization problems for limit cycles of planar polynomial vector fields”, J. Differential Equations, 260 (2016), 3844–3859 | DOI | MR | Zbl
[32] I. Niven, H. S. Zuckerman, An introduction to the theory of numbers, John Wiley and Sons, Inc., New York, 1969 | MR
[33] H. Prodinger, R. F. Tichy, “Fibonacci numbers of graphs”, Fibonacci Quart., 20 (1982), 16–21 | MR | Zbl
[34] R. Prohens, J. Torregrosa, “New lower bounds for the Hilbert numbers using reversible centers”, Nonlinearity, 32 (2019), 331–355 | DOI | MR | Zbl
[35] F. Rong, “A note on the topological classification of complex polynomial differential equations with only centre singularities”, J. Difference Equ. Appl., 18 (2012), 1947–1949 | DOI | MR | Zbl
[36] K. S. Sibirskii, “On the number of limit cycles in the neighborhood of a singular point”, Differ. Equ., 1 (1965), 36–47 | MR
[37] N. J. A. Sloane, Bijection between rooted trees and arrangements of circles, Note on A000081, (accessed 6 April 2023) https://oeis.org/A000081/a000081b.txt
[38] N. J. A. Sloane, Entry A000081, The On-Line Encyclopedia of Integer Sequences, , OEIS Foundation Inc. (accessed 6 April 2023) https://oeis.org/A000081
[39] N. J. A. Sloane, Entry A006082, The On-Line Encyclopedia of Integer Sequences, , OEIS Foundation Inc. (accessed 6 April 2023) https://oeis.org/A006082
[40] X. B. Sun, M. Han, “On the number of limit cycles of a $Z_4$-equivariant quintic near-Hamiltonian system”, Acta Math. Sin. (Engl. Ser.), 31 (2015), 1805–1824 | DOI | MR | Zbl
[41] K. Yamato, “An effective method of counting the number of limit cycles”, Nagoya Math. J., 76 (1979), 35–114 | DOI | MR | Zbl