Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2023_1_a4, author = {Cristina Bujac and Dana Schlomiuk and Nicolae Vulpe}, title = {The bifurcation diagram of the configurations of invariant lines of total multiplicity exactly three in quadratic vector fields}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {42--77}, publisher = {mathdoc}, number = {1}, year = {2023}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a4/} }
TY - JOUR AU - Cristina Bujac AU - Dana Schlomiuk AU - Nicolae Vulpe TI - The bifurcation diagram of the configurations of invariant lines of total multiplicity exactly three in quadratic vector fields JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2023 SP - 42 EP - 77 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a4/ LA - en ID - BASM_2023_1_a4 ER -
%0 Journal Article %A Cristina Bujac %A Dana Schlomiuk %A Nicolae Vulpe %T The bifurcation diagram of the configurations of invariant lines of total multiplicity exactly three in quadratic vector fields %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2023 %P 42-77 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a4/ %G en %F BASM_2023_1_a4
Cristina Bujac; Dana Schlomiuk; Nicolae Vulpe. The bifurcation diagram of the configurations of invariant lines of total multiplicity exactly three in quadratic vector fields. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2023), pp. 42-77. https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a4/
[1] J. C. Artés, J. Llibre, D. Schlomiuk and N. Vulpe, Geometric configurations of singularities of planar polynomial differential systems [A global classification in the quadratic case], Birkha̋user/Springer, Cham, 2021, xii+699 pp. | MR | Zbl
[2] J. C. Artés, J. Llibre, D. Schlomiuk and N. Vulpe, “Invariant conditions for phase portraits of quadratic systems with complex conjugate invariant lines meeting at a finite point”, Rend. Circ. Mat. Palermo, Series 2, 23 pp. | DOI | MR
[3] J. C. Artés, J. Llibre, D. Schlomiuk and N. Vulpe, “Global Topological Configurations of Singularities for the Whole Family of Quadratic Differential Systems”, Qualitative Theory of Dynamical Systems, 19:51 (2020), 32 pp. | MR | Zbl
[4] V. A. Baltag and N. Vulpe, “Total multiplicity of all finite critical points of the polynomial differential system”, Differ. Equ. Dyn. Syst., 5 (1997), 455–471 | MR | Zbl
[5] C. Bujac, D. Schlomiuk and N. Vulpe, “On families $QSL_{\geq 2}$ of quadratic systems with invariant lines of total multiplicity at least 2”, Qual. Theory Dyn. Syst., 21:4 (2022), 133, 68 pp. | DOI | MR | Zbl
[6] C. Christopher, J. Llibre and J. V. Pereira, “Multiplicity of invariant algebraic curves in polynomial vector fields”, Pacific J. Math., 229:1 (2007), 63–117 | DOI | MR | Zbl
[7] J. H. Grace and A. Young, The algebra of invariants, Stechert, New York, 1941 | MR
[8] P. J. Olver, Classical Invariant Theory, London Mathematical Society student texts, 44, Cambridge University Press, 1999 | MR | Zbl
[9] D. Schlomiuk and N. Vulpe, “Planar quadratic differential systems with invariant straight lines of at least five total multiplicity”, Qual. Theory Dyn. Syst., 5:1 (2004), 135–194 | DOI | MR | Zbl
[10] D. Schlomiuk and N. Vulpe, “Geometry of quadratic differential systems in the neighborhood of infinity”, J. Differential Equations, 215:2 (2005), 357–400 | DOI | MR | Zbl
[11] D. Schlomiuk and N. Vulpe, “Planar quadratic differential systems with invariant straight lines of total multiplicity four”, Nonlinear Anal., 68:4 (2008), 681–715 | DOI | MR | Zbl
[12] D. Schlomiuk and N. Vulpe, “Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity”, Rocky Mountain J. Math., 38:6 (2008), 2015–2075 | DOI | MR | Zbl
[13] D. Schlomiuk and N. Vulpe, “Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, no. 1 (56), 27–83 | MR | Zbl
[14] D. Schlomiuk and N. Vulpe, “Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity”, Rocky Mountain J. Math., 38:6 (2008), 2015–2075 | DOI | MR | Zbl
[15] D. Schlomiuk and N. Vulpe, “The full study of planar quadratic differential systems possessing a line of singularities at infinity”, J. Dynam. Differential Equations, 20:4 (2008), 737–775 | DOI | MR | Zbl
[16] D. Schlomiuk and N. Vulpe, “Global classification of the planar Lotka–Volterra differential systems according to their configurations of invariant straight lines”, J. Fixed Point Theory Appl., 8:1 (2010), 177–245 | DOI | MR | Zbl
[17] D. Schlomiuk and N. Vulpe, “Global topological classification of Lotka–Volterra quadratic differential systems”, Electron. J. Differential Equations, 2012 (2012), 64, 69 pp. | MR | Zbl
[18] K. S. Sibirskii, Introduction to the algebraic theory of invariants of differential equations, Translated from Russian, Nonlinear Science: Theory and Applications, Manchester University Press, Manchester, 1988 | MR | Zbl
[19] D. Schlomiuk and X. Zhang, “Quadratic differential systems with complex conjugate invariant lines meeting at a finite point”, J. Differential Equations, 265:8 (2018), 3650–3684 | DOI | MR | Zbl
[20] Guangjian Suo and Yongshau Chen, “The real quadratic system with two conjugate imaginary straight line solutions”, Ann. Diff. Eqns., 2 (1986), 197–207 | MR | Zbl