Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2023_1_a3, author = {Yantao Yang and Xiang Zhang}, title = {A survey on local integrability and its regularity}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {29--41}, publisher = {mathdoc}, number = {1}, year = {2023}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a3/} }
TY - JOUR AU - Yantao Yang AU - Xiang Zhang TI - A survey on local integrability and its regularity JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2023 SP - 29 EP - 41 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a3/ LA - en ID - BASM_2023_1_a3 ER -
Yantao Yang; Xiang Zhang. A survey on local integrability and its regularity. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2023), pp. 29-41. https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a3/
[1] Bibikov Yu.N., Local Theory of Nonlinear Analytic Ordinary Differential Equations, Lecture Notes in Math., 702, Springer-Verlag, Berlin, 1979 | DOI | MR | Zbl
[2] Chen J., Yi Y., Zhang X., “First integrals and normal forms for germs of analytic vector fields”, J. Differential Equations, 245 (2008), 1167–1184 | DOI | MR | Zbl
[3] Darboux G., “Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges)”, Bull. Sci. Math. 2éme série, 2 (1878), 60–96; 123–144; 151–200
[4] Darboux G., “De l'emploi des solutions particuliè res algébriques dans l'intégration des systèmes d'équations différentielles algébriques”, C. R. Math. Acad. Sci. Paris, 86 (1878), 1012–1014
[5] Chow S.N., Li C., Wang D., Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, 1994 | MR | Zbl
[6] Cong W., Llibre J., Zhang X., “Generalized rational first integrals of analytic differential systems”, J. Differ. Equ., 251 (2011), 2770–2788 | DOI | MR | Zbl
[7] Du Z., Romanovski V., Zhang X., “Varieties and analytic normalizations of partially integrable systems”, J. Differential Equations, 260 (2016), 6855–6871 | DOI | MR | Zbl
[8] Furta S.D., “On non-integrability of general systems of differential equations”, Z. angew Math. Phys., 47 (1996), 112–131 | DOI | MR | Zbl
[9] Ito H., “Convergence of Birkhoff normal forms for integrable systems”, Comment. Math. Helv., 64 (1989), 412–461 | DOI | MR | Zbl
[10] Ito H., “Integrability of Hamiltonian systems and Birkhoff normal forms in the simple resonance case”, Math. Ann., 292 (1992), 411–444 | DOI | MR | Zbl
[11] Ito H., “Birkhoff normalization and superintegrability of Hamilton systems”, Ergodic Theory Dynam. Systems, 29 (2009), 1853–1880 | DOI | MR | Zbl
[12] Li W., Normal Form Theory and Applications, Science Press, Beijing, 2000 (in Chinese)
[13] Li W., Llibre J., Zhang X., “Local first integrals of differential systems and diffeomorphisms”, Z. Angew. Math. Phys., 54 (2003), 235–255 | DOI | MR | Zbl
[14] Liu Y.R., Li J., Huang W., Planar dynamical systems. Selected classical problems, De Gruyter, Berlin; Science Press New York, Ltd., New York, 2014 | MR | Zbl
[15] Llibre J., Pantazi C., Walcher S., “First integrals of local analytic differential systems”, Bull. Sci. Math., 136 (2012), 342–359 | DOI | MR | Zbl
[16] Llibre J., Walcher S., Zhang X., “Local Darboux first integrals of analytic differential systems”, Bull. Sci. Math., 138 (2014), 71–88 | DOI | MR | Zbl
[17] Poincaré H., “Sur l'intégration des équations différentielles du premier order et du premier degré I”, Rend. Circ. Mat. Palermo, 5 (1891), 161–191 | DOI
[18] Romanovski V.G., Shafer D.S., The center and cyclicity problems: a computational algebra approach, Birkhäuser Boston, Ltd., Boston, MA, 2009 | MR | Zbl
[19] Schlomiuk D., “Algebraic particular integrals, integrability and the problem of the center”, Trans. Amer. Math. Soc., 338:2 (1993), 799–841 | DOI | MR | Zbl
[20] Shi S., “On the nonexistence of rational first integrals for nonlinear systems and semiquasihomogeneous systems”, J. Math. Anal. Appl., 335 (2007), 125–134 | DOI | MR | Zbl
[21] Shi S., Li Y., “Non-integrability for general nonlinear systems”, Z. Angew. Math. Phys., 52 (2001), 191–200 | DOI | MR | Zbl
[22] Stolovitch L., “Smooth Gevrey normal forms of vector fields near a fixed point”, Ann. Inst. Fourier, 63 (2013), 241–267 | DOI | MR | Zbl
[23] Wu H., Xu X., Zhang D., “On the ultradifferentiable normalization”, Math. Z., 299 (2021), 751–779 | DOI | MR | Zbl
[24] Wu K., Zhang X., “Analytic normalization of analytically integrable differential systems near a periodic orbit”, J. Differential Equations, 256 (2014), 3552–3567 | DOI | MR | Zbl
[25] Xu S., Wu H., Zhang X., On the local Gevrey integrability, Preprint, 2023
[26] Ye Y., Theory of Limit Cycles, Transl. Math. Monograph., 66, Amer. Math. Soc., 1986 | MR | Zbl
[27] Ye Y., Qualitative Theory of Polynomial Differential Systems, Shanghai Science Technical Publisher, Shanghai, 1995 (in Chinese) | Zbl
[28] Zhang X., “Analytic normalization of analytic integrable systems and the embedding flows”, J. Differential Equations, 244 (2008), 1080–1092 | DOI | MR | Zbl
[29] Zhang X., “Analytic integrable systems: Analytic normalization and embedding flows”, J. Differential Equations, 254 (2013), 3000–3022 | DOI | MR | Zbl
[30] Zhang X., “A note on local integrability of differential systems”, J. Differential Equations, 263 (2017), 7309–7321 | DOI | MR | Zbl
[31] Zhang X., Integrability of Dynamical Systems: Algebra and Analysis, Developments in Mathematics, 47, Springer-Natural, Singapore, 2017 | DOI | MR | Zbl
[32] Zhang X., “Regularity and convergence of local first integrals of analytic differential systems”, J. Differential Equations, 294 (2021), 40–59 | DOI | MR | Zbl
[33] Zhang Z., Ding T., Huang W., Dong Z., Qualitative Theory of Differential Equations, Transl. Math. Monograph, 101, Amer. Math. Soc., 1992 | MR | Zbl
[34] Ziglin S.L., “Bifurcation of solutions and the nonexistence of first integrals in Hamiltonian mechanics II”, Functional. Anal. Appl., 17:1 (1983), 8–23 | DOI | MR | Zbl
[35] Ziglin S.L., “Bifurcation of solutions and the nonexistence of first integrals in Hamiltonian mechanics I”, Functional. Anal. Appl., 16:3 (1982), 30–41 | MR
[36] Zung N.T., “Convergence versus integrability in Birkhoff normal form”, Ann. Math., 161 (2005), 141–156 | DOI | MR | Zbl
[37] Zung N.T., “Convergence versus integrability in Poincaré-Dulac normal form”, Math. Res. Lett., 9 (2002), 217–228 | DOI | MR | Zbl