Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2023_1_a2, author = {Tatjana Petek and Valery G. Romanovski}, title = {Time-reversibility and ivariants of some $3$-dim systems}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {16--28}, publisher = {mathdoc}, number = {1}, year = {2023}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a2/} }
TY - JOUR AU - Tatjana Petek AU - Valery G. Romanovski TI - Time-reversibility and ivariants of some $3$-dim systems JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2023 SP - 16 EP - 28 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a2/ LA - en ID - BASM_2023_1_a2 ER -
%0 Journal Article %A Tatjana Petek %A Valery G. Romanovski %T Time-reversibility and ivariants of some $3$-dim systems %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2023 %P 16-28 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a2/ %G en %F BASM_2023_1_a2
Tatjana Petek; Valery G. Romanovski. Time-reversibility and ivariants of some $3$-dim systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2023), pp. 16-28. https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a2/
[1] W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, Graduate Studies in Mathematics, 3, American Mathematical Society, Providence, RI, 1994 | DOI | MR | Zbl
[2] D. Cox, J. Little, D. O'Shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Undergraduate Texts in Mathematics, Forth edition, Springer, Cham, 2015, xvi+646 pp. | DOI | MR | Zbl
[3] Z. Hu, M. Han, and V. G. Romanovski, “Local integrability of a family of three-dimensional quadratic systems”, Physica D: Nonlinear Phenomena, 265 (2013), 78–86 | DOI | MR | Zbl
[4] A. S. Jarrah, R. Laubenbacher, and V. Romanovski, “The Sibirsky component of the center variety of polynomial differential systems”, Computer algebra and computer analysis (Berlin, 2001), J. Symbolic Comput., 35, 2003, 577–589 | DOI | MR | Zbl
[5] J. S. W. Lamb and J. A. G. Roberts, “Time-reversal symmetry in dynamical systems: a survey”, Time-reversal symmetry in dynamical systems (Coventry, 1996), Phys. D, 112, 1998, 1–39 | DOI | MR | Zbl
[6] J. Llibre, C. Pantazi, and S. Walcher, “First integrals of local analytic differential systems”, Bull. Sci. Math., 136 (2012), 342–359 | DOI | MR | Zbl
[7] V. G. Romanovski, “Time-Reversibility in 2-Dim Systems”, Open Systems Information Dynamics, 15:1 (2008), 1–12 | DOI | MR
[8] V. G. Romanovski and D. S. Shafer, “Time-reversibility in two-dimensional polynomial systems”, Differential Equations with Symbolic Computations, Trends in Mathematics, eds. D. Wang and Z. Zheng, Birkhauser Verlag, Basel, 2005, 67–84 | DOI | MR
[9] V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach, Birkhäuser, Boston, 2009 | MR | Zbl
[10] V. G. Romanovski, D. S. Shafer, “Complete integrability and time-reversibility of some 3-dim systems”, Applied Mathematics Letters, 51 (2016), 27–33 | DOI | MR | Zbl
[11] V. G. Romanovski, Y. Xia, X. Zhang, “Varieties of local integrability of analytic differential systems and their applications”, J. Differential Equations, 257 (2014), 3079–3101 | DOI | MR | Zbl
[12] K. S. Sibirsky, Algebraic Invariants of Differential Equations and Matrices, Shtiintsa, Kishinev, 1976 (in Russian)
[13] Manchester University Press, 1988 | MR | Zbl
[14] X. Zhang, “Analytic normalization of analytic integrable systems and the embedding flows”, J. Differential Equations, 244 (2008), 1080–1092 | DOI | MR | Zbl