Some families of quadratic systems with at most one limit cycle
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2023), pp. 8-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work of Chicone and Shafer published in 1982 together with the work of Bamon published in 1986 proved that any polynomial differential system of degree two has finitely many limit cycles. But the problem remains open of providing a uniform upper bound for the maximum number of limit cycles that a polynomial differential system of degree two can have, i.e. the second part of the 16th Hilbert problem restricted to the polynomial differential systems of degree two remains open. Here we present six subclasses of polynomial differential systems of degree two for which we can prove that an upper bound for their maximum number of limit cycles is one.
@article{BASM_2023_1_a1,
     author = {Jaume Llibre},
     title = {Some families of quadratic systems with at most one limit cycle},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {8--15},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a1/}
}
TY  - JOUR
AU  - Jaume Llibre
TI  - Some families of quadratic systems with at most one limit cycle
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2023
SP  - 8
EP  - 15
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a1/
LA  - en
ID  - BASM_2023_1_a1
ER  - 
%0 Journal Article
%A Jaume Llibre
%T Some families of quadratic systems with at most one limit cycle
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2023
%P 8-15
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a1/
%G en
%F BASM_2023_1_a1
Jaume Llibre. Some families of quadratic systems with at most one limit cycle. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2023), pp. 8-15. https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a1/

[1] R. Bamon, “Quadratic vector fields in the plane have a finite number of limit cycles”, Int. Hautes Études Sci. Publ. Math., 64 (1986), 111–142 | DOI | MR | Zbl

[2] Transl. Amer. Math. Soc. Ser. (1), 100 (1954), 397–413 | MR

[3] L. S. Chen and M. S. Wang, “The relative position, and the number, of limit cycles of a quadratic differential system”, Acta Math. Sinica, 22 (1979), 751–758 | DOI | MR | Zbl

[4] C. Chicone and T. Jinghuang, “On general properties of quadratic systems”, The Amer. Math. Monthl, 89:3 (1982), 167–178 | DOI | MR | Zbl

[5] C. Chicone and D. S. Shafer, “Separatrix and limit cycles of quadratic systems and Dulac's theorem”, Trans. Amer. Math. Soc., 278:2 (1983), 585–612 | MR | Zbl

[6] W. A. Coppel, “A survey on quadratic systems”, J. Differential Equations, 2 (1966), 293–304 | DOI | MR | Zbl

[7] A. Gasull and J. Llibre, “Limit cycles for a class of Abel equations”, SIAM J. Math. Anal., 21 (1990), 1235–1244 | DOI | MR | Zbl

[8] D. Hilbert, “Mathematische Probleme”, Lecture, Second Internat. Congr. Math. (Paris, 1900), Nachr. Ges. Wiss. Göttingen Math. Phys. KL., 1900, 253–297; English transl.: Bull. Amer. Math. Soc., 8 (1902), 437–479 ; Bull. (New Series) Amer. Math. Soc., 37 (2000), 407–436 | DOI | MR | DOI | MR | Zbl

[9] Yu. Ilyashenko, Finiteness theorems for limit cycles, Translations of Math. Monographs, 94, Amer. Math. Soc., 1991 | DOI | MR | Zbl

[10] W. Kapteyn, “On the midpoints of integral curves of differential equations of the first degree”, Nederl. Akad. Wetensch. Verslag. Afd. Natuurk. Konikl. Nederland, 1911, 1446–1457 (Dutch)

[11] W. Kapteyn, “New investigations on the midpoints of integrals of differential equations of the first degree”, Nederl. Akad. Wetensch. Verslag Afd. Natuurk., 20 (1912), 1354–1365; 21, 27–33 (Dutch)

[12] I. G. Petrovskii and E. M. Landis, “On the number of limit cycles of the equation $dy/dx=P(x,y)/Q(x,y)$, where $P$ and $Q$ are polynomials”, Mat. Sb. N.S., 43 (1957), 149–168 (Russian) ; Amer. Math. Soc. Transl., 14 (1960), 181–200 | MR | MR

[13] I. G. Petrovskii and E. M. Landis, “Corrections to the articles "On the number of limit cycles of the equation $dy/dx= P(x,y)/Q(x,y)$, where $P$ and $Q$ are polynomials"”, Mat. Sb. N.S., 48 (1959), 255–263 (Russian) | MR

[14] H. Poincaré, Sur les courbes définies par une équation différentielle, Oevres complètes, 1, 1928

[15] D. Schlomiuk, “Algebraic particular integrals, integrability and the problem of the center”, Trans. Amer. Math. Soc., 338 (1993), 799–841 | DOI | MR | Zbl

[16] S. Shi, “On limit cycles of plane quadratic systems”, Sci. Sin., 25 (1982), 41–50 | MR | Zbl

[17] A. P. Vorob'ev, “Cycles about a singular point of the node type”, Dokl. Akad. Nauk. BSSR, 4 (1960), 369–391 (in Russian) | MR

[18] N. I. Vulpe, “Affine–invariant conditions for the topological discrimination of quadratic systems with a center”, Differential Equations, 19 (1983), 273–280 | MR | Zbl