Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2023_1_a1, author = {Jaume Llibre}, title = {Some families of quadratic systems with at most one limit cycle}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {8--15}, publisher = {mathdoc}, number = {1}, year = {2023}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a1/} }
TY - JOUR AU - Jaume Llibre TI - Some families of quadratic systems with at most one limit cycle JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2023 SP - 8 EP - 15 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a1/ LA - en ID - BASM_2023_1_a1 ER -
Jaume Llibre. Some families of quadratic systems with at most one limit cycle. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2023), pp. 8-15. https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a1/
[1] R. Bamon, “Quadratic vector fields in the plane have a finite number of limit cycles”, Int. Hautes Études Sci. Publ. Math., 64 (1986), 111–142 | DOI | MR | Zbl
[2] Transl. Amer. Math. Soc. Ser. (1), 100 (1954), 397–413 | MR
[3] L. S. Chen and M. S. Wang, “The relative position, and the number, of limit cycles of a quadratic differential system”, Acta Math. Sinica, 22 (1979), 751–758 | DOI | MR | Zbl
[4] C. Chicone and T. Jinghuang, “On general properties of quadratic systems”, The Amer. Math. Monthl, 89:3 (1982), 167–178 | DOI | MR | Zbl
[5] C. Chicone and D. S. Shafer, “Separatrix and limit cycles of quadratic systems and Dulac's theorem”, Trans. Amer. Math. Soc., 278:2 (1983), 585–612 | MR | Zbl
[6] W. A. Coppel, “A survey on quadratic systems”, J. Differential Equations, 2 (1966), 293–304 | DOI | MR | Zbl
[7] A. Gasull and J. Llibre, “Limit cycles for a class of Abel equations”, SIAM J. Math. Anal., 21 (1990), 1235–1244 | DOI | MR | Zbl
[8] D. Hilbert, “Mathematische Probleme”, Lecture, Second Internat. Congr. Math. (Paris, 1900), Nachr. Ges. Wiss. Göttingen Math. Phys. KL., 1900, 253–297; English transl.: Bull. Amer. Math. Soc., 8 (1902), 437–479 ; Bull. (New Series) Amer. Math. Soc., 37 (2000), 407–436 | DOI | MR | DOI | MR | Zbl
[9] Yu. Ilyashenko, Finiteness theorems for limit cycles, Translations of Math. Monographs, 94, Amer. Math. Soc., 1991 | DOI | MR | Zbl
[10] W. Kapteyn, “On the midpoints of integral curves of differential equations of the first degree”, Nederl. Akad. Wetensch. Verslag. Afd. Natuurk. Konikl. Nederland, 1911, 1446–1457 (Dutch)
[11] W. Kapteyn, “New investigations on the midpoints of integrals of differential equations of the first degree”, Nederl. Akad. Wetensch. Verslag Afd. Natuurk., 20 (1912), 1354–1365; 21, 27–33 (Dutch)
[12] I. G. Petrovskii and E. M. Landis, “On the number of limit cycles of the equation $dy/dx=P(x,y)/Q(x,y)$, where $P$ and $Q$ are polynomials”, Mat. Sb. N.S., 43 (1957), 149–168 (Russian) ; Amer. Math. Soc. Transl., 14 (1960), 181–200 | MR | MR
[13] I. G. Petrovskii and E. M. Landis, “Corrections to the articles "On the number of limit cycles of the equation $dy/dx= P(x,y)/Q(x,y)$, where $P$ and $Q$ are polynomials"”, Mat. Sb. N.S., 48 (1959), 255–263 (Russian) | MR
[14] H. Poincaré, Sur les courbes définies par une équation différentielle, Oevres complètes, 1, 1928
[15] D. Schlomiuk, “Algebraic particular integrals, integrability and the problem of the center”, Trans. Amer. Math. Soc., 338 (1993), 799–841 | DOI | MR | Zbl
[16] S. Shi, “On limit cycles of plane quadratic systems”, Sci. Sin., 25 (1982), 41–50 | MR | Zbl
[17] A. P. Vorob'ev, “Cycles about a singular point of the node type”, Dokl. Akad. Nauk. BSSR, 4 (1960), 369–391 (in Russian) | MR
[18] N. I. Vulpe, “Affine–invariant conditions for the topological discrimination of quadratic systems with a center”, Differential Equations, 19 (1983), 273–280 | MR | Zbl