Criteria for the nonexistence of periodic orbits in planar differential systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2023), pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we summarize some well-known criteria for the nonexistence of periodic orbits in planar differential systems. Additionally we present two new criteria and illustrate with examples these criteria.
@article{BASM_2023_1_a0,
     author = {Jaume Gin\'e and Jaume Llibre},
     title = {Criteria for the nonexistence of periodic orbits in planar differential systems},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--7},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a0/}
}
TY  - JOUR
AU  - Jaume Giné
AU  - Jaume Llibre
TI  - Criteria for the nonexistence of periodic orbits in planar differential systems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2023
SP  - 3
EP  - 7
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a0/
LA  - en
ID  - BASM_2023_1_a0
ER  - 
%0 Journal Article
%A Jaume Giné
%A Jaume Llibre
%T Criteria for the nonexistence of periodic orbits in planar differential systems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2023
%P 3-7
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a0/
%G en
%F BASM_2023_1_a0
Jaume Giné; Jaume Llibre. Criteria for the nonexistence of periodic orbits in planar differential systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2023), pp. 3-7. https://geodesic-test.mathdoc.fr/item/BASM_2023_1_a0/

[1] Chen, H., Yang, H., Zhang, R., Zhang, X., New criterions of nonexistence of periodic orbits of planar dynamical systems and their appications, 2022, arXiv: 2203.00921v1 [math.DS]

[2] Chicone, C., Ordinary differential equations with applications, Texts in Applied Mathematics, 34, second edition, Springer, New York, 2006 | MR | Zbl

[3] Dumortier, F., Llibre, J., Artés, J. C., Qualitative theory of planar differential systems, Universitext, Springer-Verlag, Berlin, 2006 | MR | Zbl

[4] Liénard, A., “Etude des oscillations entretenues”, Revue générale de l'électricité, 23 (1928), 901–912/946–954

[5] LLibre, J., Mousavi, M., “Phase portraits of the Higgins-Selkov system”, Discrete Contin. Dyn. Syst., 27 (2022), 245–256 | DOI | MR | Zbl

[6] Perko, L., Differential equations and dynamical systems, Texts in Applied Mathematics, 7, third edition, Springer-Verlag, New York, 2001 | DOI | MR | Zbl

[7] Yang, L., “Recent advances on determining the number of real roots of parametric polynomials”, J. Symbolic Comput., 28 (1999), 225–242 | DOI | MR | Zbl

[8] Ye, Yan Qian et al., Theory of limit cycles, Translations of Mathematical Monographs, 66, American Mathematical Society, Providence, RI, 1986 | MR | Zbl

[9] Zhang, Zhi Fen et al., Qualitative theory of differential equations, Translations of Mathematical Monographs, 101, American Mathematical Society, Providence, RI, 1992 | MR | Zbl