Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2022_3_a5, author = {David Cheban}, title = {Poisson {Stable} {Motions} and {Global} {Attractors} of {Symmetric} {Monotone} {Nonautonomous} {Dynamical} {Systems}}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {56--94}, publisher = {mathdoc}, number = {3}, year = {2022}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a5/} }
TY - JOUR AU - David Cheban TI - Poisson Stable Motions and Global Attractors of Symmetric Monotone Nonautonomous Dynamical Systems JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2022 SP - 56 EP - 94 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a5/ LA - ru ID - BASM_2022_3_a5 ER -
%0 Journal Article %A David Cheban %T Poisson Stable Motions and Global Attractors of Symmetric Monotone Nonautonomous Dynamical Systems %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2022 %P 56-94 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a5/ %G ru %F BASM_2022_3_a5
David Cheban. Poisson Stable Motions and Global Attractors of Symmetric Monotone Nonautonomous Dynamical Systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 56-94. https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a5/
[1] D. Angeli and E. D. Sontag, “A note on monotone systems with positive translation invariance”, Proceedings of Control and Automation, MED'06. 14th Mediterranean Conference on Control and Automation (MED) (Ancona (Italy), 28-30 June 2006), 2006, 1–6
[2] D. Angeli and E. D. Sontag, “Translation-invariant monotone systems, and a global convergence result for enzymatic futile cycles”, Nonlinear Anal. Real World Appl., 9 (2008), 128–140 | DOI | MR | Zbl
[3] D. Angeli, P. De Leenheer and E. D. Sontag, “On the structural monotonicity of chemical networks”, Proceedings IEEE Conference on Decision and Control, CDC 2006 (San Diego, CA, USA, December 13-15, 2006), 2006, 7–12 | DOI
[4] V. M. Bebutov, “On the shift dynamical systems on the space of continuous functions”, Bull. of Inst. of Math. of Moscow University, 2:5 (1940), 1–65 (in Russian)
[5] Extensions of Minimal Transformation Group, Sijthoff Noordhoff, Alphen aan den Rijn, 1979
[6] I. U. Bronshtein and V. F. Cherny, “About extensions of dynamical systems with the uniformly asymptotically stable points”, Differential Equations, 10:7 (1974), 1225–1230 (in Russian) | Zbl
[7] T. Caraballo and D. Cheban, “Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard's separation condition. I”, J. Differential Equations, 246:1 (2009), 108–128 | DOI | MR | Zbl
[8] D. Cheban, “On the comparability of the points of dynamical systems with regard to the character of recurrence property in the limit”, Mathematical Sciences, Kishinev, “Shtiintsa”, 1977, no. 1, 66–71
[9] D. Cheban, “Global pullback attractors of $\mathbb C$-analytic nonautonomous dynamical systems”, Stoch. Dyn., 1:4 (2001), 511–535 | DOI | MR | Zbl
[10] D. Cheban, “Levitan almost periodic and almost automorphic solutions of $V$-monotone differential equations”, J. Dynam. Differential Equations, 20:3 (2008), 669–697 | DOI | MR | Zbl
[11] D. Cheban, Asymptotically Almost Periodic Solutions of Differential Equations, Hindawi Publishing Corporation, New York, 2009, ix+186 pp. | Zbl
[12] D. Cheban, Global Attractors of Nonautonomous Dynamical and Control Systems, Interdisciplinary Mathematical Sciences, 18, 2nd Edition, World Scientific, River Edge, NJ, 2015, xxv+589 pp. | DOI
[13] D. N. Cheban, “Levitan/Bohr Almost Periodic and Almost Automorphic Solutions of the Scalar Differential Equations”, Dynamical Systems, 33:4 (2018), 667–690 | DOI | MR | Zbl
[14] D. N. Cheban, “I. U. Bronshtein's Conjecture for Monotone Nonautonomous Dynamical Systems”, Discrete and Continuous Dynamical Systems: series B, 24:3 (2019), 1095–1113 | DOI | MR | Zbl
[15] David Cheban, “Almost Periodic and Almost Automorphic Solutions of Monotone Differential Equations with a Strict Monotone First Integral”, Bul. Acad. Ştiinţe Mold. Mat., 3 (94) (2020), 39–74 | Zbl
[16] David N. Cheban, Nonautonomous Dynamics: Nonlinear Oscillations and Global Attractors, Springer Monographs in Mathematics, 2020, xxii+434 pp. | Zbl
[17] David Cheban, “On the structure of the Levinson center for monotone dissipative non-autonomous dynamical systems”, Advance in Mathematics Research, 29, Nova Science Publishers, Inc., 2021, 173–218
[18] David Cheban, “On the structure of te Levinson center for monotone nonautonomous dynamical systems with a first integral”, Carpatian Journal of Matematics, 38:1 (2022), 67–94
[19] David Cheban, “Different Types of Compact Global Attractors for Cocycles with a Noncompact Phase Space of Driving System and the Relationship Between Them”, Bul. Acad. Ştiinţe Mold. Mat., 1 (98):2022, 35–55
[20] David Cheban, “Poisson Stable Motions of Monotone and Strongly Sub-Linear Non-Autonomous Dynamical Systems”, Discrete and Continuous Dynamical Systems, 43:2 (2023), 895–947 | DOI | MR
[21] B. P. Demidovich, Lectures on Mathematical Theory of Stability, “Nauka”, M., 1967 (in Russian)
[22] H. Hu and J. Jiang, “Translation-invariant monotone systems, I: Autonomous/periodic case”, Nonlinear Analysis: RWA, 11:4 (2010), 3211–3217 | DOI | Zbl
[23] H. Hu and J. Jiang, “Translation-invariant monotone systems, II: Almost periodic/automorphic case”, Proc. Amer. Math. Soc., 138:11 (2010), 3997-4007 | DOI | MR | Zbl
[24] D. Husemoller, Fibre Bundles, Graduate Texts in Mathematics, 20, Third edition, Springer-Verlag, New York, 1994, xx+353 pp. | DOI
[25] J. Jiang and X. Zhao, “Convergence in monotone and uniformly stable skew-product semiflows with applications”, J. Reine Angew. Math., 589 (2005), 21–55 | DOI | MR | Zbl
[26] B. M. Levitan, Almost Periodic Functions, Gosudarstv. Izdat. Tehn.-Teor. Lit., M., 1953, 396 pp. (in Russian) | Zbl
[27] Almost Periodic Functions and Differential Equations, Cambridge University Press, Cambridge, 1982, xi+211 pp. | Zbl | Zbl
[28] Qiang Liu and Yi Wang, “Phase-Translation Group Actions on Strongly Monotone Skew-product Semiflows”, Transactions of the American Mathematical Society, 364:7 (2012), 3781–3804 | DOI | MR | Zbl
[29] H. G. Othmer, Analysis of complex reaction networks, , 2003 http://www.math.leidenuniv.nl/verduyn
[30] Nonlocal Problems in the Theory of Oscilations, Academic Press, 1966, 367 pp.
[31] G. Sell, Lectures on Topological Dynamics and Differential Equations, Van Nostrand Reinhold Mathematical Studies, 33, Van Nostrand Reinhold Co., London, 1971, ix+199 pp.
[32] B. A. Shcherbakov, “Classification of Poisson-stable motions, Pseudo-recurrent motions”, Dokl. Akad. Nauk SSSR, 146 (1962), 322–324 (in Russian) | Zbl
[33] B. A. Shcherbakov, “On classes of Poisson stability of motion, Pseudorecurrent motions”, Bul. Akad. Stiince RSS Moldoven, 1963, no. 1, 58–72 (in Russian) | Zbl
[34] B. A. Shcherbakov, Topologic Dynamics and Poisson Stability of Solutions of Differential Equations, Ştiinţa, Chişinău, 1972, 231 pp. (in Russian)
[35] B. A. Shcherbakov, “The compatible recurrence of the bounded solutions of first order differential equations”, Differencial'nye Uravnenija, 10 (1974), 270–275 (in Russian) | Zbl
[36] Differential Equations, 11:7 (1975), 937–943 | MR | Zbl
[37] B. A. Shcherbakov, Poisson Stability of Motions of Dynamical Systems and Solutions of Differential Equations, Ştiinţa, Chişinău, 1985, 148 pp. (in Russian)
[38] B. A. Shcherbakov and D. Cheban, “Poisson asymptotic stability of motions of dynamical systems and their comparability with regard to the recurrence property in the limit”, Differential Equations, 13:5 (1977), 898–906 | Zbl
[39] T. Yoshizawa, “Note on the Boundedness and the Ultimate Boundedness of Solutions $x'=f(t,x)$”, Mem. Coll. Sci. University of Kyoto, Ser. A, 29 (1955), 275–291 | Zbl
[40] T. Yoshizawa, “Liapunov's Function and Boundedness of Solutions”, Funkc. Ekvacioj, Ser. Int., 2 (1959), 95–142 | Zbl
[41] Introduction to Topological Dynamics, Noordhoff, Leiden, 1975, ix+163 pp. | Zbl