A self-similar solution for the two-dimensional Broadwell system via the Bateman equation
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 30-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

A self-similar solution of the Broadwell system is found. Here the solution is sought using a reduction that transforms the given system into a system of differential equations. Further, the solution is constructed using the Painlevé series. Here the system already passes the Painlevé test and it is possible to find the solution if the equations in resonance satisfy the solution of the two-dimensional Bateman equation. Exact solution of the Bateman equation is established, allowing to find new explicit solution for the original system. In the process of calculations, we use the Wolfram Mathematica program. The proof of these results is carried out at a rigorous mathematical level.
@article{BASM_2022_3_a3,
     author = {Sergey Dukhnovsky},
     title = {A self-similar solution for the two-dimensional {Broadwell} system via the {Bateman} equation},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {30--40},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a3/}
}
TY  - JOUR
AU  - Sergey Dukhnovsky
TI  - A self-similar solution for the two-dimensional Broadwell system via the Bateman equation
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2022
SP  - 30
EP  - 40
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a3/
LA  - en
ID  - BASM_2022_3_a3
ER  - 
%0 Journal Article
%A Sergey Dukhnovsky
%T A self-similar solution for the two-dimensional Broadwell system via the Bateman equation
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2022
%P 30-40
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a3/
%G en
%F BASM_2022_3_a3
Sergey Dukhnovsky. A self-similar solution for the two-dimensional Broadwell system via the Bateman equation. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 30-40. https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a3/

[1] S. A. Dukhnovskii, “Solutions of the Carleman system via the Painlevé expansion”, Vladikavkaz Math. J., 22 (2020), 58–67 (in Russian) | MR | Zbl

[2] J. Weiss, M. Tabor, G. Carnevale, “The Painlevé property for partial differential equations”, Journal of Mathematical Physics, 24 (1983), 522–526 | DOI | MR | Zbl

[3] N. Euler, O. Lindblom, “On discrete velocity Boltzmann equations and the Painlevé analysis”, Nonlinear Analysis: Theory, Methods and Applications, 47:2 (2001), 1407–1412 | DOI | MR | Zbl

[4] M. H. M. Moussa, M. Zidan Abd Al-Halim, “Painlevé analysis, Bäcklund transformation and exact solutions for the (3+1)-dimensional nonlinear partial differential equation represented by Burgers' equation”, Examples and Counterexamples, 2 (2022), 1–4 | DOI

[5] S. Dukhnovsky, “On solutions of the kinetic McKean system”, Bul. Acad. Ştiinţe Repub. Mold., Mat., 94 (2020), 3–11 | MR | Zbl

[6] N. Euler, W.-H. Steeb, “Painlevé test and discrete Boltzmann equations”, Australian Journal of Physics, 42 (1989), 1–10 | DOI | MR

[7] E. V. Radkevich, “On the large-time behavior of solutions to the Cauchy problem for a 2-dimensional discrete kinetic equation”, Journal of Mathematical Sciences, New York, 202:5 (2014), 735–768 | DOI | MR | Zbl

[8] F. Tchier, M. Inc, A. Yusuf, “Symmetry analysis, exact solutions and numerical approximations for the space-time Carleman equation in nonlinear dynamical systems”, The European Physical Journal Plus, 134 (2019), 1–18 | DOI

[9] O. A. Vasil'eva, S. A. Dukhnovskii, E. V. Radkevich, “On the nature of local equilibrium in the Carleman and Godunov-Sultangazin equations”, Journal of Mathematical Sciences, New York, 235:4 (2018), 392–454 | DOI | MR | Zbl

[10] S. K. Godunov, U. M. Sultangazin, “On discrete models of the kinetic Boltzmann equation”, Russian Mathematical Surveys, 26:3(159) (1971), 3–51 | DOI | Zbl

[11] O. Lindblom, N. Euler, “Solutions of discrete-velocity Boltzmann equations via Bateman and Riccati equations”, Theoretical and Mathematical Physics, 131:2 (2002), 595–608 | DOI | MR | Zbl

[12] S. A. Dukhnovsky, “The tanh-function method and the $(G'/G)$-expansion method for the kinetic McKean system”, Differential equations and control processes, 2 (2021), 87–100 | MR | Zbl

[13] D. B. Fairlie, “Integrable systems in higher dimensions”, Prog. of Theor. Phys. Supp., 118 (1995), 309–327 | DOI | Zbl

[14] N. Euler, O. Lindblom, M. Euler, L.-E. Persson, “The higher dimensional Bateman equation and Pailevé analysis of nonintegrable wave equations”, Symmetry in nonlinear mathematical physics, 1 (1997), 185–192 | Zbl

[15] S. A. Dukhnovsky, “New exact solutions for the time fractional Broadwell system”, Advanced Studies: Euro-Tbilisi Mathematical Journal, 15:1 (2022), 53–66 | DOI | MR | Zbl

[16] O. V. Ilyin, “Symmetries, the current function, and exact solutions for Broadwell's two-dimensional stationary kinetic model”, Theoret. Math. Phys., 179:3 (2014), 679–688 | DOI | MR | Zbl

[17] T. Natta, K. A. Agosseme, A. d'Almeida, “Exact solution of the four velocity Broadwell model”, Global journal of pure and applied mathematics, 13 (2017), 7035–7050

[18] O. V. Ilyin, “Stationary solutions of the kinetic Broadwell model”, Theoretical and Mathematical Physics, 170:3 (2012), 406–412 | DOI | MR | Zbl

[19] S. A. Dukhnovskii, “On the rate of stabilization of solutions to the Cauchy problem for the Godunov-Sultangazin system with periodic initial data”, Journal of Mathematical Sciences, 259:3 (2021), 349–375 | DOI | Zbl

[20] S. A. Dukhnovsky, “New exact solutions for the two-dimensional Broadwell system”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 22:1 (2022), 4–14 | DOI | MR | Zbl

[21] A. D. Polyanin, V. F. Zaitsev, Handbook of nonlinear partial differential equations, Chapman Hall/CRC, 2004, 814 pp. | Zbl

[22] V. Vedenyapin, A. Sinitsyn, E. Dulov, Kinetic Boltzmann, Vlasov and related Equations, Elsevier, Amsterdam, 2011, 304 pp. | DOI | Zbl