Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2022_3_a3, author = {Sergey Dukhnovsky}, title = {A self-similar solution for the two-dimensional {Broadwell} system via the {Bateman} equation}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {30--40}, publisher = {mathdoc}, number = {3}, year = {2022}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a3/} }
TY - JOUR AU - Sergey Dukhnovsky TI - A self-similar solution for the two-dimensional Broadwell system via the Bateman equation JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2022 SP - 30 EP - 40 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a3/ LA - en ID - BASM_2022_3_a3 ER -
%0 Journal Article %A Sergey Dukhnovsky %T A self-similar solution for the two-dimensional Broadwell system via the Bateman equation %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2022 %P 30-40 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a3/ %G en %F BASM_2022_3_a3
Sergey Dukhnovsky. A self-similar solution for the two-dimensional Broadwell system via the Bateman equation. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 30-40. https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a3/
[1] S. A. Dukhnovskii, “Solutions of the Carleman system via the Painlevé expansion”, Vladikavkaz Math. J., 22 (2020), 58–67 (in Russian) | MR | Zbl
[2] J. Weiss, M. Tabor, G. Carnevale, “The Painlevé property for partial differential equations”, Journal of Mathematical Physics, 24 (1983), 522–526 | DOI | MR | Zbl
[3] N. Euler, O. Lindblom, “On discrete velocity Boltzmann equations and the Painlevé analysis”, Nonlinear Analysis: Theory, Methods and Applications, 47:2 (2001), 1407–1412 | DOI | MR | Zbl
[4] M. H. M. Moussa, M. Zidan Abd Al-Halim, “Painlevé analysis, Bäcklund transformation and exact solutions for the (3+1)-dimensional nonlinear partial differential equation represented by Burgers' equation”, Examples and Counterexamples, 2 (2022), 1–4 | DOI
[5] S. Dukhnovsky, “On solutions of the kinetic McKean system”, Bul. Acad. Ştiinţe Repub. Mold., Mat., 94 (2020), 3–11 | MR | Zbl
[6] N. Euler, W.-H. Steeb, “Painlevé test and discrete Boltzmann equations”, Australian Journal of Physics, 42 (1989), 1–10 | DOI | MR
[7] E. V. Radkevich, “On the large-time behavior of solutions to the Cauchy problem for a 2-dimensional discrete kinetic equation”, Journal of Mathematical Sciences, New York, 202:5 (2014), 735–768 | DOI | MR | Zbl
[8] F. Tchier, M. Inc, A. Yusuf, “Symmetry analysis, exact solutions and numerical approximations for the space-time Carleman equation in nonlinear dynamical systems”, The European Physical Journal Plus, 134 (2019), 1–18 | DOI
[9] O. A. Vasil'eva, S. A. Dukhnovskii, E. V. Radkevich, “On the nature of local equilibrium in the Carleman and Godunov-Sultangazin equations”, Journal of Mathematical Sciences, New York, 235:4 (2018), 392–454 | DOI | MR | Zbl
[10] S. K. Godunov, U. M. Sultangazin, “On discrete models of the kinetic Boltzmann equation”, Russian Mathematical Surveys, 26:3(159) (1971), 3–51 | DOI | Zbl
[11] O. Lindblom, N. Euler, “Solutions of discrete-velocity Boltzmann equations via Bateman and Riccati equations”, Theoretical and Mathematical Physics, 131:2 (2002), 595–608 | DOI | MR | Zbl
[12] S. A. Dukhnovsky, “The tanh-function method and the $(G'/G)$-expansion method for the kinetic McKean system”, Differential equations and control processes, 2 (2021), 87–100 | MR | Zbl
[13] D. B. Fairlie, “Integrable systems in higher dimensions”, Prog. of Theor. Phys. Supp., 118 (1995), 309–327 | DOI | Zbl
[14] N. Euler, O. Lindblom, M. Euler, L.-E. Persson, “The higher dimensional Bateman equation and Pailevé analysis of nonintegrable wave equations”, Symmetry in nonlinear mathematical physics, 1 (1997), 185–192 | Zbl
[15] S. A. Dukhnovsky, “New exact solutions for the time fractional Broadwell system”, Advanced Studies: Euro-Tbilisi Mathematical Journal, 15:1 (2022), 53–66 | DOI | MR | Zbl
[16] O. V. Ilyin, “Symmetries, the current function, and exact solutions for Broadwell's two-dimensional stationary kinetic model”, Theoret. Math. Phys., 179:3 (2014), 679–688 | DOI | MR | Zbl
[17] T. Natta, K. A. Agosseme, A. d'Almeida, “Exact solution of the four velocity Broadwell model”, Global journal of pure and applied mathematics, 13 (2017), 7035–7050
[18] O. V. Ilyin, “Stationary solutions of the kinetic Broadwell model”, Theoretical and Mathematical Physics, 170:3 (2012), 406–412 | DOI | MR | Zbl
[19] S. A. Dukhnovskii, “On the rate of stabilization of solutions to the Cauchy problem for the Godunov-Sultangazin system with periodic initial data”, Journal of Mathematical Sciences, 259:3 (2021), 349–375 | DOI | Zbl
[20] S. A. Dukhnovsky, “New exact solutions for the two-dimensional Broadwell system”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 22:1 (2022), 4–14 | DOI | MR | Zbl
[21] A. D. Polyanin, V. F. Zaitsev, Handbook of nonlinear partial differential equations, Chapman Hall/CRC, 2004, 814 pp. | Zbl
[22] V. Vedenyapin, A. Sinitsyn, E. Dulov, Kinetic Boltzmann, Vlasov and related Equations, Elsevier, Amsterdam, 2011, 304 pp. | DOI | Zbl