Optimal control of jump-diffusion processes with random parameters
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 22-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let X(t) be a controlled jump-diffusion process starting at x[a,b] and whose infinitesimal parameters vary according to a continuous-time Markov chain. The aim is to minimize the expected value of a cost function with quadratic control costs until X(t) leaves the interval (a,b), and a termination cost that depends on the final value of X(t). Exact and explicit solutions are obtained for important processes.
@article{BASM_2022_3_a2,
     author = {Mario Lefebvre},
     title = {Optimal control of jump-diffusion processes with random parameters},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {22--29},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a2/}
}
TY  - JOUR
AU  - Mario Lefebvre
TI  - Optimal control of jump-diffusion processes with random parameters
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2022
SP  - 22
EP  - 29
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a2/
LA  - en
ID  - BASM_2022_3_a2
ER  - 
%0 Journal Article
%A Mario Lefebvre
%T Optimal control of jump-diffusion processes with random parameters
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2022
%P 22-29
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a2/
%G en
%F BASM_2022_3_a2
Mario Lefebvre. Optimal control of jump-diffusion processes with random parameters. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 22-29. https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a2/

[1] Ionescu A., Lefebvre M., Munteanu F., “Optimal control of a stochastic version of the Lotka-Volterra model”, Gen. Math., 24:1 (2016), 3–10

[2] Ionescu A., Lefebvre M., Munteanu F., “Feedback linearization and optimal control of the Kermack-McKendrick model for the spread of epidemics”, Adv. Anal., 2:3 (2017), 157–166

[3] Lefebvre M., “LQG homing for jump-diffusion processes”, ROMAI J., 10:2 (2014), 1–6 | MR

[4] Lefebvre M., “Optimally ending an epidemic”, Optimization, 67:3 (2018), 399–407 | DOI | MR | Zbl

[5] Lefebvre M., “LQG homing problems for processes used in financial mathematics”, Rev. Roumaine Math. Pures Appl., 63:1 (2018), 27–37 | MR | Zbl

[6] Makasu C., “Explicit solution for a vector-valued LQG homing problem”, Optim. Lett., 7:3 (2013), 607–612 | DOI | MR | Zbl

[7] Whittle P., Optimization over Time, v. I, Wiley, Chichester, 1982 | Zbl