Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2022_3_a2, author = {Mario Lefebvre}, title = {Optimal control of jump-diffusion processes with random parameters}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {22--29}, publisher = {mathdoc}, number = {3}, year = {2022}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a2/} }
TY - JOUR AU - Mario Lefebvre TI - Optimal control of jump-diffusion processes with random parameters JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2022 SP - 22 EP - 29 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a2/ LA - en ID - BASM_2022_3_a2 ER -
Mario Lefebvre. Optimal control of jump-diffusion processes with random parameters. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 22-29. https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a2/
[1] Ionescu A., Lefebvre M., Munteanu F., “Optimal control of a stochastic version of the Lotka-Volterra model”, Gen. Math., 24:1 (2016), 3–10
[2] Ionescu A., Lefebvre M., Munteanu F., “Feedback linearization and optimal control of the Kermack-McKendrick model for the spread of epidemics”, Adv. Anal., 2:3 (2017), 157–166
[3] Lefebvre M., “LQG homing for jump-diffusion processes”, ROMAI J., 10:2 (2014), 1–6 | MR
[4] Lefebvre M., “Optimally ending an epidemic”, Optimization, 67:3 (2018), 399–407 | DOI | MR | Zbl
[5] Lefebvre M., “LQG homing problems for processes used in financial mathematics”, Rev. Roumaine Math. Pures Appl., 63:1 (2018), 27–37 | MR | Zbl
[6] Makasu C., “Explicit solution for a vector-valued LQG homing problem”, Optim. Lett., 7:3 (2013), 607–612 | DOI | MR | Zbl
[7] Whittle P., Optimization over Time, v. I, Wiley, Chichester, 1982 | Zbl