Some integrals for groups of bounded linear operators on finite-dimensional non-Archimedean Banach spaces
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we extend the Volkenborn integral and Shnirelman integral for groups of bounded linear operators on finite-dimensional non-Archimedean Banach spaces over Qp and Cp respectively. When the ground field is a complete non-Archimedean valued field, which is also algebraically closed, we give some functional calculus for groups of infinitesimal generator A such that A is a nilpotent operator on finite-dimensional non-Archimedean Banach spaces.
@article{BASM_2022_3_a0,
     author = {J. Ettayb},
     title = {Some integrals for groups of bounded linear operators on finite-dimensional {non-Archimedean} {Banach} spaces},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--14},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a0/}
}
TY  - JOUR
AU  - J. Ettayb
TI  - Some integrals for groups of bounded linear operators on finite-dimensional non-Archimedean Banach spaces
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2022
SP  - 3
EP  - 14
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a0/
LA  - en
ID  - BASM_2022_3_a0
ER  - 
%0 Journal Article
%A J. Ettayb
%T Some integrals for groups of bounded linear operators on finite-dimensional non-Archimedean Banach spaces
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2022
%P 3-14
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a0/
%G en
%F BASM_2022_3_a0
J. Ettayb. Some integrals for groups of bounded linear operators on finite-dimensional non-Archimedean Banach spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 3-14. https://geodesic-test.mathdoc.fr/item/BASM_2022_3_a0/

[1] Adams W. W., “Transcendental Numbers in the $P$-Adic Domain”, American Journal of Mathematics, 88:2 (1966), 279–308 | DOI | MR | Zbl

[2] Amice Y., “Formules intégrales de Cauchy dans un corps $p$-adique”, Théorie des nombres, Séminaire Delange-Pisot-Poitou, 4, no. 8, 1963, 7 pp.

[3] Diagana T., “$C_0 $-semigroups of linear operator on some ultrametric Banach spaces”, International journal of Matimatics and Mathematical Science, 2006, 9 pp.

[4] Diagana T., Ramaroson F., Non-archimedean Operators Theory, Springer, 2016

[5] El Amrani A., Blali A., Ettayb J., Babahmed M., “A note on $C_0 $-groups and $C$-groups on non-Archimedean Banach spaces”, Asian-European Journal of Mathematics, 14:5 (2021), 19 pp.

[6] Ettayb J., “Two parameter $C_0 $-groups of bounded linear operators on non-Archimedean Banach spaces”, Mem. Differential Equations Math. Phys. (to appear) | Zbl

[7] Schikhof W. H., Ultrematric calculus. An introduction to $p$-adic analysis, Cambrige Studies in Advanced Mathematics, Cambridge, 1984

[8] Pazy A., “Semigroups of linear operators and applications to partial differential equations”, Appl. Math. Sci., 44, Springer–Verlag, 1983 | DOI | Zbl

[9] Vishik M., “Non-Archimedean spectral theory”, J. Soviet Math., 30 (1985), 2513–2554 | DOI