Asymptotic Behavior of Homogeneous Linear Recurrent Processes and Their Perturbations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2022), pp. 103-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the impact of small perturbations on asymptotic evolution of homogeneous linear recurrent processes is investigated. Analytical methods for describing homogeneous linear recurrent systems, from convergence, periodicity and boundedness perspective, are presented. These methods are based on Jury Stability Criterion and the classification of the roots of minimal characteristic polynomial in relation to unit disc.
@article{BASM_2022_2_a6,
     author = {Alexandru Lazari},
     title = {Asymptotic {Behavior} of {Homogeneous} {Linear} {Recurrent} {Processes} and {Their} {Perturbations}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {103--112},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a6/}
}
TY  - JOUR
AU  - Alexandru Lazari
TI  - Asymptotic Behavior of Homogeneous Linear Recurrent Processes and Their Perturbations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2022
SP  - 103
EP  - 112
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a6/
LA  - ru
ID  - BASM_2022_2_a6
ER  - 
%0 Journal Article
%A Alexandru Lazari
%T Asymptotic Behavior of Homogeneous Linear Recurrent Processes and Their Perturbations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2022
%P 103-112
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a6/
%G ru
%F BASM_2022_2_a6
Alexandru Lazari. Asymptotic Behavior of Homogeneous Linear Recurrent Processes and Their Perturbations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2022), pp. 103-112. https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a6/

[1] Jury E. I., “On the roots of a real polynomial inside the unit circle and a stability criterion for linear discrete systems”, IFAC Proceedings Volumes, 1:2 (1963), 142–153 | DOI

[2] Katsuhiko O., Discrete-Time Control Systems, 2nd Ed., Prentice-Hall, Inc., NJ, USA, 1995, 745 pp.

[3] Lazari A., “Algebraic view over homogeneous linear recurrent rocesses”, Bul. Acad. Ştiinţe Repub. Mold., Mat., 2021, no. 1(95)-2(96), 99–109 | MR

[4] Lazari A., Lozovanu D., Capcelea M., Dynamical deterministic and stochastic systems: Evolution, optimization and discrete optimal control, CEP USM, Chişinău, 2015, 310 pp. (in Romanian)