Limits of solutions to the semilinear plate equation with small parameter
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2022), pp. 76-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the existence of the limits of solutions to the semilinear plate equation with boundary Dirichlet condition with a small parameter coefficient of the second order derivative in time. We establish the convergence of solutions to the perturbed problem and their derivatives in spacial variables to the corresponding solutions to the unperturbed problem as the small parameter tends to zero.
@article{BASM_2022_2_a5,
     author = {Andrei Perjan and Galina Rusu},
     title = {Limits of solutions to the semilinear plate equation with small parameter},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {76--102},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a5/}
}
TY  - JOUR
AU  - Andrei Perjan
AU  - Galina Rusu
TI  - Limits of solutions to the semilinear plate equation with small parameter
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2022
SP  - 76
EP  - 102
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a5/
LA  - en
ID  - BASM_2022_2_a5
ER  - 
%0 Journal Article
%A Andrei Perjan
%A Galina Rusu
%T Limits of solutions to the semilinear plate equation with small parameter
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2022
%P 76-102
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a5/
%G en
%F BASM_2022_2_a5
Andrei Perjan; Galina Rusu. Limits of solutions to the semilinear plate equation with small parameter. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2022), pp. 76-102. https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a5/

[1] A. Adams, Sobolev Spaces, Academic Press, New York–San Francisco–London, 1975 | MR

[2] V. Barbu, Semigroups of nonlinear contractions in Banach spases, Ed. of the Romanian Academy, Bucharest, 1974 (in Romanian) | MR

[3] V. Barbu, Nonlinear differential equations of monotone types in Banach Spaces, Springer-Verlag, New York, 2010 | MR

[4] K. J. Engel, “On singular perturbations of second order Cauchy problems”, Pacific J. Math., 152:1 (1992), 79–91 | DOI | MR

[5] H. O. Fattorini, “The hyperbolic singular perturbation problem: An operator theoretic approach”, J. Differ. Equations, 70:1 (1987), 1–41 | DOI | MR

[6] M. Ghisi, M. Gobbino, “Global-in-time uniform convergence for linear hyperbolic-parabolic singular perturbations”, Acta Math. Sin. (Engl. Ser.), 22:4 (2006), 1161–1170 | DOI | MR

[7] B. Najman, “Time singular limit of semilinear wave equations with damping”, J. Math. Anal. Appl., 174 (1993), 95–117 | DOI | MR

[8] A. Perjan, Singularly perturbed boundary value problems for evolution differential equations, D.Sc. thesis, Moldova State University, 2008 (in Romanian)

[9] A. Perjan, “Linear singular perturbations of hyperbolic-parabolic type”, Bul. Acad. Stiinte Repub. Mold. Mat., 2003, no. 2(42), 95–112 | MR

[10] A. Perjan, G. Rusu, “Convergence estimates for abstract second-order singularly perturbed Cauchy problems with Lipschitzian nonlinearities”, Asymptot. Anal., 74:3-4 (2011), 135–165 | MR

[11] A. Perjan, G. Rusu, “Convergence estimates for abstract second order differential equations with two small parameters and monotone nonlinearities”, Topol. Methods Nonlinear Anal., 54:2B (2019), 1093–1110 | MR

[12] M. M. Lavrentiev, K. G. Reznitskaya, V. G. Yakhno, One-dimensional inverse problems of mathematical physics, Nauka, Novosibirsk, 1982 (in Russian) | MR

[13] M. M. Vainberg, Variational method and method of monotone operators, Nauka, M., 1972 (in Russian) | MR

[14] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York, 1968 | MR