Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2022_2_a5, author = {Andrei Perjan and Galina Rusu}, title = {Limits of solutions to the semilinear plate equation with small parameter}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {76--102}, publisher = {mathdoc}, number = {2}, year = {2022}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a5/} }
TY - JOUR AU - Andrei Perjan AU - Galina Rusu TI - Limits of solutions to the semilinear plate equation with small parameter JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2022 SP - 76 EP - 102 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a5/ LA - en ID - BASM_2022_2_a5 ER -
%0 Journal Article %A Andrei Perjan %A Galina Rusu %T Limits of solutions to the semilinear plate equation with small parameter %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2022 %P 76-102 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a5/ %G en %F BASM_2022_2_a5
Andrei Perjan; Galina Rusu. Limits of solutions to the semilinear plate equation with small parameter. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2022), pp. 76-102. https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a5/
[1] A. Adams, Sobolev Spaces, Academic Press, New York–San Francisco–London, 1975 | MR
[2] V. Barbu, Semigroups of nonlinear contractions in Banach spases, Ed. of the Romanian Academy, Bucharest, 1974 (in Romanian) | MR
[3] V. Barbu, Nonlinear differential equations of monotone types in Banach Spaces, Springer-Verlag, New York, 2010 | MR
[4] K. J. Engel, “On singular perturbations of second order Cauchy problems”, Pacific J. Math., 152:1 (1992), 79–91 | DOI | MR
[5] H. O. Fattorini, “The hyperbolic singular perturbation problem: An operator theoretic approach”, J. Differ. Equations, 70:1 (1987), 1–41 | DOI | MR
[6] M. Ghisi, M. Gobbino, “Global-in-time uniform convergence for linear hyperbolic-parabolic singular perturbations”, Acta Math. Sin. (Engl. Ser.), 22:4 (2006), 1161–1170 | DOI | MR
[7] B. Najman, “Time singular limit of semilinear wave equations with damping”, J. Math. Anal. Appl., 174 (1993), 95–117 | DOI | MR
[8] A. Perjan, Singularly perturbed boundary value problems for evolution differential equations, D.Sc. thesis, Moldova State University, 2008 (in Romanian)
[9] A. Perjan, “Linear singular perturbations of hyperbolic-parabolic type”, Bul. Acad. Stiinte Repub. Mold. Mat., 2003, no. 2(42), 95–112 | MR
[10] A. Perjan, G. Rusu, “Convergence estimates for abstract second-order singularly perturbed Cauchy problems with Lipschitzian nonlinearities”, Asymptot. Anal., 74:3-4 (2011), 135–165 | MR
[11] A. Perjan, G. Rusu, “Convergence estimates for abstract second order differential equations with two small parameters and monotone nonlinearities”, Topol. Methods Nonlinear Anal., 54:2B (2019), 1093–1110 | MR
[12] M. M. Lavrentiev, K. G. Reznitskaya, V. G. Yakhno, One-dimensional inverse problems of mathematical physics, Nauka, Novosibirsk, 1982 (in Russian) | MR
[13] M. M. Vainberg, Variational method and method of monotone operators, Nauka, M., 1972 (in Russian) | MR
[14] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York, 1968 | MR