Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2022_2_a2, author = {Olufemi Olakunle George and T\`em{\'\i}t\'op\'e Gb\'ol\'ah\`an Ja{\'\i}y\'eol\'a}, title = {Nuclear identification of some new loop identities of length five}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {39--58}, publisher = {mathdoc}, number = {2}, year = {2022}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a2/} }
TY - JOUR AU - Olufemi Olakunle George AU - Tèmítópé Gbóláhàn Jaíyéolá TI - Nuclear identification of some new loop identities of length five JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2022 SP - 39 EP - 58 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a2/ LA - en ID - BASM_2022_2_a2 ER -
%0 Journal Article %A Olufemi Olakunle George %A Tèmítópé Gbóláhàn Jaíyéolá %T Nuclear identification of some new loop identities of length five %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2022 %P 39-58 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a2/ %G en %F BASM_2022_2_a2
Olufemi Olakunle George; Tèmítópé Gbóláhàn Jaíyéolá. Nuclear identification of some new loop identities of length five. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2022), pp. 39-58. https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a2/
[1] Adéníran J. O., Jaiyéolá T. G., “On central loops and the central square property”, Quasigroups Relat. Syst., 15:2 (2007), 191–200 | MR
[2] Akhtar R., Arp A., Kaminski M., Van Exel J., Vernon D., Washington C., “The varieties of Bol-Moufang quasigroups defined by a single operation”, Quasigroups Relat. Syst., 20:1 (2012), 1–10 | MR
[3] Beg A., “A theorem on C-loops”, Kyungpook Math. J., 17 (1977), 91–94 | MR
[4] Beg A., “On LC-, RC-, and C-loops”, Kyungpook Math. J., 20 (1980), 211–215 | MR
[5] Bruck R. H., A survey of Binary Systems, Springer-Verlag, Berlin-Gottingen-Heidelberg, 1958 | MR
[6] Chein O., Pflugfelder H. O., Smith J. D. H., Quasigroups and Loops: Theory and Applications, Heldermann Verlag, 1990 | MR
[7] Cote B., Harvill B., Huhn M., Kirchman A., “Classification of loops of Bol-Moufang type”, Quasigroups Relat. Syst., 19 (2011), 193–206 | MR
[8] Csorgo P., Drápal A., Kinyon K., “Buchsteiner Loops”, Int. J. Algebra Comput., 19:8 (2009), 1049–1088 | DOI | MR
[9] Drápal A., Jedlic̆ka P., “On loop identities that can be obtained by a nuclear identification”, Eur. J. of Comb., 31:7 (2010), 1907–1923 | DOI | MR
[10] Drápal A., Kinyon M., “Normality, nuclear squares and Osborn identities”, Commentat. Math. Univ. Carol., 61:4 (2020), 481–500 | MR
[11] Fenyves F., “Extra loops. I”, Publ. Math. Debr., 15 (1968), 235–238 | DOI | MR
[12] Fenyves F., “Extra loops. II: On loops with identities of Bol-Moufang type”, Publ. Math. Debr., 16 (1969), 187–192 | DOI | MR
[13] George O. O., Olaleru J. O., Adéníran J. O., Jaiyéolá T. G., “On a class of power associative LCC-loops”, Extracta Math., 37:2 (2022), 185–194 | DOI | MR
[14] Ilojide E., Jaíyéolá T. G., Olatinwo M. O., “On Holomorphy of Fenyves BCI-Algebras”, J. Niger. Math. Soc., 38:2 (2019), 139–155 | MR
[15] Jaiyéolá T. G., An isotopic study of properties of central loops, M.Sc. dissertation, University of Agriculture, Abeokuta, Nigeria, 2005
[16] Jaiyéolá T. G., “On the universality of central loops”, Acta Univ. Apulensis, Math. Inform., 19 (2009), 113–124 | MR
[17] Jaiyéolá T. G., A study of new concepts in Smarandache quasigroups and loops, InfoLearnQuest (ILQ), Ann Arbor, MI, 2009, 127 pp. | MR
[18] Jaiyéolá T. G., “Generalized right central loops”, Afr. Mat., 26:7-8 (2015), 1427–1442 | DOI | MR
[19] Jaiyéolá T. G., Adéníran J. O., “On the derivatives of central loops”, Adv. Theor. Appl. Math., 1:3 (2006), 233–244 | MR
[20] Jaiyéolá T. G., Adéníran J. O., “Algebraic properties of some varieties of loops”, Quasigroups Relat. Syst., 16:1 (2008), 37–54 | MR
[21] Jaiyéolá T. G., Adéníran J. O., “On some autotopisms of non-Steiner central loops”, J. Niger. Math. Soc., 27 (2008), 53–67 | MR
[22] Jaiyéolá T. G., Adéníran J. O., “On isotopic characterization of central loops”, Creat. Math. Inform., 18:1 (2009), 39–45 | MR
[23] Jaiyéolá T. G., Adéníran J. O., “A new characterization of Osborn-Buchsteiner loops”, Quasigroups Relat. Syst., 20:2 (2012), 233–238 | MR
[24] Jaíyéolá T. G., Adeniregun A. A., Asiru M. A., “Finite FRUTE Loops”, J. Algebra Appl., 16:2 (2017), 10 pp. | DOI | MR
[25] Jaíyéolá T.G., Sòlárìn A. R. T., Adéníran J. O., “Some Bol-Moufang characterization of the Thomas precession of a gyrogroup”, Algebras Groups Geom., 31:3 (2014), 341–362 | MR
[26] Jaíyéolá T. G., Ilojide E., Olatinwo M. O., Smarandache F., “On the Classification of Bol-Moufang Type of Some Varieties of Quasi Neutrosophic Triplet Loop (Fenyves BCI-Algebras)”, Symmetry, 10:10 (2018), 427 pp. | DOI | MR
[27] Jaíyéolá T. G., Ilojide E., Saka A. J., Ilori K. G., “On the Isotopy of some Varieties of Fenyves Quasi Neutrosophic Triplet Loop (Fenyves BCI-algebras)”, Neutrosophic Sets and Systems, 31 (2020), 200–223 | DOI | MR
[28] Jaíyéolá T. G., Adeniregun A. A., Oyebola O. O., Adelakun A. O., “FRUTE loops”, Algebras, Groups and Geometries, 37:2 (2021), 159–179 | DOI
[29] Nagy G. P., Vojtěchovský P., The LOOPS Package, Computing with quasigroups and loops in GAP 3.4.1 http://www.math.du.edu/loops
[30] The GAP Group, GAPS - Groups, Algorithms, Programming, Version 4.11.0, http://www.gap-system.org/Manuals/pkg/loops/doc/manual.pdf
[31] Pflugfelder H. O., Quasigroups and loops: Introduction, Sigma Series in Pure Mathematics, 7, Heldermann Verlag, Berlin, 1990, 147 pp. | MR
[32] Phillips J. D., “A short basis for the variety of WIP PACC-loops”, Quasigroups Relat. Syst., 14:1 (2006), 73–80 | MR
[33] Osborn J. M., “Loops with the weak inverse property”, Pac. J. Math., 10 (1960), 295–304 | DOI | MR
[34] Phillips J. D., Vojtẽchovský P., “The varieties of quasigroups of Bol-Moufang type: an equational reasoning approach”, J. Algebra, 293:1 (2005), 17–33 | DOI | MR
[35] Phillips J. D., Vojtẽchovský P., “The varieties of loops of Bol-Moufang type”, Algebra Univers., 54:3 (2005), 259–271 | DOI | MR
[36] Phillips J. D., Vojtẽchovský P., “C-loops: an introduction”, Publ. Math. Debr., 68:1-2 (2006), 115–137 | DOI | MR
[37] Kinyon M. K., Phillips J. D., Vojtẽchovský P., “C-loops: extensions and constructions”, J. Algebra Appl., 6:1 (2007), 1–20 | DOI | MR
[38] Ramamurthi V. S., Sòlárìn A. R. T., “On finite right central loops”, Publ. Math. Debr., 35:3-4 (1988), 261–264 | DOI | MR
[39] Robinson D. A., “Bol loops”, Trans. Am. Math. Soc., 123 (1966), 341–354 | DOI | MR
[40] Sòlárìn A. R. T., “On the Identities of Bol Moufang Type”, Kyungpook Math. J., 28:1 (1988), 51–62 | MR