Isostrophy Bryant-Schneider Group-Invariant of Bol Loops
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2022), pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the recent past, Grecu and Syrbu (in no order of preference) have jointly and individually reported some results on isostrophy invariants of Bol loops. Also, the Bryant-Schneider group of a loop has been found important in the study of the isotopy-isomorphy of some varieties of loops (e.g. Bol loops, Moufang loops, Osborn loops). In this current work, the Bryant-Schneider group of a middle Bol loop was linked with some of the isostrophy-group invariance results of Grecu and Syrbu. In particular, it was shown that some subgroups of the Bryant-Schneider group of a middle Bol loop are equal (or isomorphic) to the automorphism and pseudo-aumorphism groups of its corresponding right (left) Bol loop. Some elements of the Bryant-Schneider group of a middle Bol loop were shown to induce automorphisms and middle pseudo-automorphisms. It was discovered that if a middle Bol loop is of exponent 2, then, its corresponding right (left) Bol loop is a left (right) G-loop.
@article{BASM_2022_2_a0,
     author = {T\`em{\'\i}t\'op\'e Gb\'ol\'ah\`an Ja{\'\i}y\'eol\'a and Benard Osoba and Anthony Oyem},
     title = {Isostrophy {Bryant-Schneider} {Group-Invariant} of {Bol} {Loops}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--18},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a0/}
}
TY  - JOUR
AU  - Tèmítópé Gbóláhàn Jaíyéolá
AU  - Benard Osoba
AU  - Anthony Oyem
TI  - Isostrophy Bryant-Schneider Group-Invariant of Bol Loops
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2022
SP  - 3
EP  - 18
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a0/
LA  - ru
ID  - BASM_2022_2_a0
ER  - 
%0 Journal Article
%A Tèmítópé Gbóláhàn Jaíyéolá
%A Benard Osoba
%A Anthony Oyem
%T Isostrophy Bryant-Schneider Group-Invariant of Bol Loops
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2022
%P 3-18
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a0/
%G ru
%F BASM_2022_2_a0
Tèmítópé Gbóláhàn Jaíyéolá; Benard Osoba; Anthony Oyem. Isostrophy Bryant-Schneider Group-Invariant of Bol Loops. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2022), pp. 3-18. https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a0/

[1] Adeniran, J. O., “More on the Bryant-Schneider group of a conjugacy closed loop”, Proc. Jangjeon Math. Soc., 5:1 (2002), 35–46 | MR

[2] Adeniran, J. O., “On the Bryant-Schneider group of a conjugacy closed loop”, An. Ştiinţ. Univ. Al. I. Cuza Iaşi., Ser. Nouă, Mat., 45:2 (1999), 241–246 | MR

[3] Adeniran, J. O., “On the Bryant-Schneider group of a conjugacy closed loop”, Hadronic J., 22:3 (1999), 305–311 | MR

[4] Adeniran, J. O., “Some properties of the Bryant-Schneider groups of certain Bol loops”, Proc. Jangjeon Math. Soc., 6:1 (2003), 71–80 | MR

[5] Adeniran, J. O., Jaíyéọlá, T. G., “On central loops and the central square property”, Quasigroups Relat. Syst., 15:2 (2007), 191–200 | MR

[6] Adeniran, J. O., Akinleye, S. A. and Alakoya, T. O., “On the Core and Some Isotopic Characterisations of Generalised Bol Loops”, J. of the Nigerian Asso. Mathematical Phy., 1 (2015), 99–104

[7] Adeniran, J. O., Jaiyéọlá T. G. and Idowu, K. A., “Holomorph of generalized Bol loops”, Novi Sad J. Math., 44:1 (2014), 37–51 | MR

[8] Adeniran, J. O., Jaiyéọlá T. G. and Idowu, K. A., “On the isotopic characterizations of generalized Bol loops”, Proyecciones, 41:4 (2022), 805–823 | DOI | MR

[9] Belousov, V. D., Grundlagen der Theorie der Quasigruppen und Loops, Verlag. “Nauka”, M., 1967 (Russian)

[10] Belousov, V. D., Algebraic nets and quasigroups, “Shtiintsa”, Kishinev, 1971, 166 pp. (Russian) | MR

[11] Belousov, V. D. and Sokolov, E. I., “$n$-ary inverse quasigroups (${\rm J}$-quasigroups)”, Mat. Issled., 102 (1988), 26–36 (Russian) | MR

[12] Burris, S. and Sankappanavar, H. P., A course in universal algebra, Graduate Texts in Mathematics, 78, Springer-Verlag, New York-Berlin, xvi+1981 | DOI | MR

[13] Drapal, A. and Shcherbacov, V., “Identities and the group of isostrophisms”, Commentat. Math. Univ. Carol., 53:3 (2012), 347–374 | MR

[14] Drapal, A. and Syrbu, P., “Middle Bruck loops and the total multiplication group”, Result. Math., 77:4 (2022), 27 pp. | DOI | MR

[15] Foguel, T., Kinyon, M. K. and Phillips, J. D., “On twisted subgroups and Bol loops of odd order”, Rocky Mt. J. Math., 36:1 (2006), 183–212 | DOI | MR

[16] Grecu, I., “On multiplication groups of isostrophic quasigroups”, Proceedings of the Third Conference of Mathematical Society of Moldova, IMCS-50 (Chisinau, Republic of Moldova, 2014), 78–81

[17] Grecu, I. and Syrbu, P., “On some isostrophy invariants of Bol loops”, Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys., 54:5 (2012), 145–154 | MR

[18] Grecu, I. and Syrbu, P., “Commutants of middle Bol loops”, Quasigroups Relat. Syst., 22:1 (2014), 81–88 | MR

[19] Gvaramiya A., “On a class of loops”, Uch. Zapiski MAPL, 375, 1971, 25–34 (Russian) | MR

[20] Jaiyéọlá, T. G., “On Smarandache Bryant Schneider group of a Smarandache loop”, Int. J. Math. Comb., 2 (2008), 51–63 | DOI | MR

[21] Jaiyéọlá, T. G., Adéníran, J. O. and Sòlárìn, A. R. T., “Some necessary conditions for the existence of a finite Osborn loop with trivial nucleus”, Algebras Groups Geom., 28:4 (2011), 363–379 | MR

[22] Jaiyéọlá, T. G., Adéníran, J. O. and Agboola, A. A. A., “On the Second Bryant Schneider group of universal Osborn loops”, ROMAI J., 9:1 (2013), 37–50 | MR

[23] Jaiyéọlá, T. G., David, S. P. and Oyebo, Y. T., “New algebraic properties of middle Bol loops”, ROMAI J., 11:2 (2015), 161–183 | MR

[24] Jaiyéọlá, T. G, David, S. P., Ilojide E., Oyebo, Y. T., “Holomorphic structure of middle Bol loops”, Khayyam J. Math., 3:2 (2017), 172–184 | MR

[25] Jaiyéọlá, T. G., David, S. P. and Oyebola, O. O., “New algebraic properties of middle Bol loops II”, Proyecciones, 40:1 (2021), 85–106 | DOI | MR

[26] Jaiyéọlá, T. G., “Basic properties of second Smarandache Bol loops”, Int. J. Math. Comb., 2 (2009), 11–20 | DOI | MR

[27] Jaiyéọlá, T. G., “Smarandache isotopy of second Smarandache Bol loops”, Scientia Magna Journal, 7:1 (2011), 82–93 | DOI

[28] Jaiyéọlá, T. G., A study of new concepts in Smarandache quasigroups and loops, InfoLearnQuest (ILQ), Ann Arbor, MI, 2009, 127 pp. | MR

[29] Jaiyéọlá, T. G. and Popoola, B. A., “Holomorph of generalized Bol loops II”, Discuss. Math., Gen. Algebra Appl., 35:1 (2015), 59–78 | DOI | MR

[30] Osoba, B., “Smarandache nuclei of second Smarandache Bol loops”, Scientia Magna Journal, 17:1 (2022), 11–21 | MR

[31] Osoba, B. and Oyebo, Y. T., “On multiplication groups of middle Bol loop related to left Bol loop”, Int. J. Math. and Appl., 6:4 (2018), 149–155

[32] Osoba, B. and Oyebo, Y. T., “On Relationship of Multiplication Groups and Isostrophic quasogroups”, International Journal of Mathematics Trends and Technology (IJMTT), 58:2 (2018), 80–84 | DOI

[33] Osoba, B. and Jaiyéọlá, T. G., “Algebraic connections between right and middle Bol loops and their cores”, Quasigroups Relat. Syst., 30:1 (2022), 149–160 | MR

[34] Osoba, B. and Oyebo Y. T., “More Results on the Algebraic Properties of Middle Bol loops”, Journal of the Nigerian Mathematical Society, 41:2 (2022), 129–142 | MR

[35] Pflugfelder, H. O., Quasigroups and loops: introduction, Sigma Series in Pure Mathematics, 7, Heldermann Verlag, Berlin, 1990, 147 pp. | MR

[36] Robinson, D. A., “The Bryant-Schneider group of a loop”, Ann. Soc. Sci. Bruxelles, Ser. I, 94 (1980), 69–81 | MR

[37] Shcherbacov, V. A., A-nuclei and A-centers of quasigroup, v. 5, Institute of Mathematics and Computer Science Academiy of Science of Moldova, Academiei str., Chisinau, MD-2028, Moldova, 2011 | MR

[38] Shcherbacov, V. A., Elements of quasigroup theory and applications, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2017, 576 pp. | MR

[39] Kuznetsov, E. A., “Gyrogroups and left gyrogroups as transversals of a special kind”, Algebra Discrete Math., 2003, no. 3, 54–81 | MR

[40] Syrbu, P., “Loops with universal elasticity”, Quasigroups Relat. Syst., 1:1 (1994), 57–65 | MR

[41] Syrbu, P., “On loops with universal elasticity”, Quasigroups Relat. Syst., 3 (1996), 41–54 | MR

[42] Syrbu, P., “On middle Bol loops”, ROMAI J., 6:2 (2010), 229–236 | MR

[43] Syrbu, P. and Grecu, I., “Loops with invariant flexibility under the isostrophy”, Bul. Acad. Ştiinţe Repub. Mold., Mat., 2020, no. 1(92), 122–128 | MR

[44] Syrbu, P. and Grecu, I., “On some groups related to middle Bol loops”, Studia Universitatis Moldaviae (Seria Stiinte Exacte si Economice), 2013, no. 7(67), 10–18