Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2022_2_a0, author = {T\`em{\'\i}t\'op\'e Gb\'ol\'ah\`an Ja{\'\i}y\'eol\'a and Benard Osoba and Anthony Oyem}, title = {Isostrophy {Bryant-Schneider} {Group-Invariant} of {Bol} {Loops}}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {3--18}, publisher = {mathdoc}, number = {2}, year = {2022}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a0/} }
TY - JOUR AU - Tèmítópé Gbóláhàn Jaíyéolá AU - Benard Osoba AU - Anthony Oyem TI - Isostrophy Bryant-Schneider Group-Invariant of Bol Loops JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2022 SP - 3 EP - 18 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a0/ LA - ru ID - BASM_2022_2_a0 ER -
%0 Journal Article %A Tèmítópé Gbóláhàn Jaíyéolá %A Benard Osoba %A Anthony Oyem %T Isostrophy Bryant-Schneider Group-Invariant of Bol Loops %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2022 %P 3-18 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a0/ %G ru %F BASM_2022_2_a0
Tèmítópé Gbóláhàn Jaíyéolá; Benard Osoba; Anthony Oyem. Isostrophy Bryant-Schneider Group-Invariant of Bol Loops. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2022), pp. 3-18. https://geodesic-test.mathdoc.fr/item/BASM_2022_2_a0/
[1] Adeniran, J. O., “More on the Bryant-Schneider group of a conjugacy closed loop”, Proc. Jangjeon Math. Soc., 5:1 (2002), 35–46 | MR
[2] Adeniran, J. O., “On the Bryant-Schneider group of a conjugacy closed loop”, An. Ştiinţ. Univ. Al. I. Cuza Iaşi., Ser. Nouă, Mat., 45:2 (1999), 241–246 | MR
[3] Adeniran, J. O., “On the Bryant-Schneider group of a conjugacy closed loop”, Hadronic J., 22:3 (1999), 305–311 | MR
[4] Adeniran, J. O., “Some properties of the Bryant-Schneider groups of certain Bol loops”, Proc. Jangjeon Math. Soc., 6:1 (2003), 71–80 | MR
[5] Adeniran, J. O., Jaíyéọlá, T. G., “On central loops and the central square property”, Quasigroups Relat. Syst., 15:2 (2007), 191–200 | MR
[6] Adeniran, J. O., Akinleye, S. A. and Alakoya, T. O., “On the Core and Some Isotopic Characterisations of Generalised Bol Loops”, J. of the Nigerian Asso. Mathematical Phy., 1 (2015), 99–104
[7] Adeniran, J. O., Jaiyéọlá T. G. and Idowu, K. A., “Holomorph of generalized Bol loops”, Novi Sad J. Math., 44:1 (2014), 37–51 | MR
[8] Adeniran, J. O., Jaiyéọlá T. G. and Idowu, K. A., “On the isotopic characterizations of generalized Bol loops”, Proyecciones, 41:4 (2022), 805–823 | DOI | MR
[9] Belousov, V. D., Grundlagen der Theorie der Quasigruppen und Loops, Verlag. “Nauka”, M., 1967 (Russian)
[10] Belousov, V. D., Algebraic nets and quasigroups, “Shtiintsa”, Kishinev, 1971, 166 pp. (Russian) | MR
[11] Belousov, V. D. and Sokolov, E. I., “$n$-ary inverse quasigroups (${\rm J}$-quasigroups)”, Mat. Issled., 102 (1988), 26–36 (Russian) | MR
[12] Burris, S. and Sankappanavar, H. P., A course in universal algebra, Graduate Texts in Mathematics, 78, Springer-Verlag, New York-Berlin, xvi+1981 | DOI | MR
[13] Drapal, A. and Shcherbacov, V., “Identities and the group of isostrophisms”, Commentat. Math. Univ. Carol., 53:3 (2012), 347–374 | MR
[14] Drapal, A. and Syrbu, P., “Middle Bruck loops and the total multiplication group”, Result. Math., 77:4 (2022), 27 pp. | DOI | MR
[15] Foguel, T., Kinyon, M. K. and Phillips, J. D., “On twisted subgroups and Bol loops of odd order”, Rocky Mt. J. Math., 36:1 (2006), 183–212 | DOI | MR
[16] Grecu, I., “On multiplication groups of isostrophic quasigroups”, Proceedings of the Third Conference of Mathematical Society of Moldova, IMCS-50 (Chisinau, Republic of Moldova, 2014), 78–81
[17] Grecu, I. and Syrbu, P., “On some isostrophy invariants of Bol loops”, Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys., 54:5 (2012), 145–154 | MR
[18] Grecu, I. and Syrbu, P., “Commutants of middle Bol loops”, Quasigroups Relat. Syst., 22:1 (2014), 81–88 | MR
[19] Gvaramiya A., “On a class of loops”, Uch. Zapiski MAPL, 375, 1971, 25–34 (Russian) | MR
[20] Jaiyéọlá, T. G., “On Smarandache Bryant Schneider group of a Smarandache loop”, Int. J. Math. Comb., 2 (2008), 51–63 | DOI | MR
[21] Jaiyéọlá, T. G., Adéníran, J. O. and Sòlárìn, A. R. T., “Some necessary conditions for the existence of a finite Osborn loop with trivial nucleus”, Algebras Groups Geom., 28:4 (2011), 363–379 | MR
[22] Jaiyéọlá, T. G., Adéníran, J. O. and Agboola, A. A. A., “On the Second Bryant Schneider group of universal Osborn loops”, ROMAI J., 9:1 (2013), 37–50 | MR
[23] Jaiyéọlá, T. G., David, S. P. and Oyebo, Y. T., “New algebraic properties of middle Bol loops”, ROMAI J., 11:2 (2015), 161–183 | MR
[24] Jaiyéọlá, T. G, David, S. P., Ilojide E., Oyebo, Y. T., “Holomorphic structure of middle Bol loops”, Khayyam J. Math., 3:2 (2017), 172–184 | MR
[25] Jaiyéọlá, T. G., David, S. P. and Oyebola, O. O., “New algebraic properties of middle Bol loops II”, Proyecciones, 40:1 (2021), 85–106 | DOI | MR
[26] Jaiyéọlá, T. G., “Basic properties of second Smarandache Bol loops”, Int. J. Math. Comb., 2 (2009), 11–20 | DOI | MR
[27] Jaiyéọlá, T. G., “Smarandache isotopy of second Smarandache Bol loops”, Scientia Magna Journal, 7:1 (2011), 82–93 | DOI
[28] Jaiyéọlá, T. G., A study of new concepts in Smarandache quasigroups and loops, InfoLearnQuest (ILQ), Ann Arbor, MI, 2009, 127 pp. | MR
[29] Jaiyéọlá, T. G. and Popoola, B. A., “Holomorph of generalized Bol loops II”, Discuss. Math., Gen. Algebra Appl., 35:1 (2015), 59–78 | DOI | MR
[30] Osoba, B., “Smarandache nuclei of second Smarandache Bol loops”, Scientia Magna Journal, 17:1 (2022), 11–21 | MR
[31] Osoba, B. and Oyebo, Y. T., “On multiplication groups of middle Bol loop related to left Bol loop”, Int. J. Math. and Appl., 6:4 (2018), 149–155
[32] Osoba, B. and Oyebo, Y. T., “On Relationship of Multiplication Groups and Isostrophic quasogroups”, International Journal of Mathematics Trends and Technology (IJMTT), 58:2 (2018), 80–84 | DOI
[33] Osoba, B. and Jaiyéọlá, T. G., “Algebraic connections between right and middle Bol loops and their cores”, Quasigroups Relat. Syst., 30:1 (2022), 149–160 | MR
[34] Osoba, B. and Oyebo Y. T., “More Results on the Algebraic Properties of Middle Bol loops”, Journal of the Nigerian Mathematical Society, 41:2 (2022), 129–142 | MR
[35] Pflugfelder, H. O., Quasigroups and loops: introduction, Sigma Series in Pure Mathematics, 7, Heldermann Verlag, Berlin, 1990, 147 pp. | MR
[36] Robinson, D. A., “The Bryant-Schneider group of a loop”, Ann. Soc. Sci. Bruxelles, Ser. I, 94 (1980), 69–81 | MR
[37] Shcherbacov, V. A., A-nuclei and A-centers of quasigroup, v. 5, Institute of Mathematics and Computer Science Academiy of Science of Moldova, Academiei str., Chisinau, MD-2028, Moldova, 2011 | MR
[38] Shcherbacov, V. A., Elements of quasigroup theory and applications, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2017, 576 pp. | MR
[39] Kuznetsov, E. A., “Gyrogroups and left gyrogroups as transversals of a special kind”, Algebra Discrete Math., 2003, no. 3, 54–81 | MR
[40] Syrbu, P., “Loops with universal elasticity”, Quasigroups Relat. Syst., 1:1 (1994), 57–65 | MR
[41] Syrbu, P., “On loops with universal elasticity”, Quasigroups Relat. Syst., 3 (1996), 41–54 | MR
[42] Syrbu, P., “On middle Bol loops”, ROMAI J., 6:2 (2010), 229–236 | MR
[43] Syrbu, P. and Grecu, I., “Loops with invariant flexibility under the isostrophy”, Bul. Acad. Ştiinţe Repub. Mold., Mat., 2020, no. 1(92), 122–128 | MR
[44] Syrbu, P. and Grecu, I., “On some groups related to middle Bol loops”, Studia Universitatis Moldaviae (Seria Stiinte Exacte si Economice), 2013, no. 7(67), 10–18