A self--similar solution and the tanh--function method for the kinetic Carleman system
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2022), pp. 99-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we consider the one–dimensional kinetic system of Carleman equations. The Carleman system is the kinetic Boltzmann equation. This system describes a monatomic rarefied gas consisting of two groups of particles. One particle from the first group, interacting with a particle of the first group, transforms into two particles of the second group. Similarly, two particles of the second group, interacting with themselves, transform into two particles of the first group, respectively. We found traveling wave solutions by using the tanh–function method for nonlinear partial differential system. The results of the work can be useful for mathematical modeling in various fields of science and technology: kinetic theory of gases, gas dynamics, autocatalysis. The obtained exact solutions are new.
@article{BASM_2022_1_a7,
     author = {S. A. Dukhnovsky},
     title = {A self--similar solution and the tanh--function method for the kinetic {Carleman} system},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {99--110},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a7/}
}
TY  - JOUR
AU  - S. A. Dukhnovsky
TI  - A self--similar solution and the tanh--function method for the kinetic Carleman system
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2022
SP  - 99
EP  - 110
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a7/
LA  - en
ID  - BASM_2022_1_a7
ER  - 
%0 Journal Article
%A S. A. Dukhnovsky
%T A self--similar solution and the tanh--function method for the kinetic Carleman system
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2022
%P 99-110
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a7/
%G en
%F BASM_2022_1_a7
S. A. Dukhnovsky. A self--similar solution and the tanh--function method for the kinetic Carleman system. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2022), pp. 99-110. https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a7/

[1] Godunov S.K., Sultangazin U.M., “On discrete models of the kinetic Boltzmann equation”, Russian Math. Surveys, 26 (1971), 1–56 | DOI | MR

[2] Polyanin A. D., Zaitsev V. F., Handbook of Nonlinear Partial Differential Equations, Chapman Hall/CRC Press, Boca Raton–London, 2004 | MR | Zbl

[3] Tchier F., Inc M., Yusuf A., “Symmetry analysis, exact solutions and numerical approximations for the space–time Carleman equation in nonlinear dynamical systems”, Eur. Phys. J. Plus., 134 (2019), 1–18 | DOI

[4] Kolodner I. I., Vindas J., “On the Carleman's model for the Boltzmann equation and its generalizations”, Ann. Mat. Pura Appl., 63 (1963), 11–32 | DOI | MR | Zbl

[5] Currò C., Oliveri F., “Similarity analysis and exact solutions for a general discrete two-velocity model of Boltzmann equation”, Meccanica, 22 (1987), 3–7 | DOI | MR | Zbl

[6] Lindblom O., Euler N., “Solutions of discrete-velocity Boltzmann equations via Bateman and Riccati equations”, Theoret. and Math. Phys., 131 (2002), 595–608 | DOI | MR | Zbl

[7] Zhang W., “The Extended Tanh method and the Exp–function method to solve a kind of nonlinear heat equation”, Math. Probl. Eng., 2010 (2010), 1–12 | MR

[8] Wazwaz A. M., “The tanh method: exact solutions of the sine-Gordon and the sinh–Gordon equations”, Appl. Math. Comput., 167 (2005), 1196–1210 | MR | Zbl

[9] Wazwaz A. M., “The tanh and the sine–cosine methods for the complex modified KdV and the generalized KdV equations”, Comput. Math. Appl., 49 (2005), 1101–1112 | DOI | MR | Zbl

[10] Wazwaz A. M., “A sine–cosine method for handling nonlinear wave equations”, Math. Comput. Model., 40 (2004), 499–508 | DOI | MR | Zbl

[11] Zhang W., Tian L., “An extended tanh–method and its application to the soliton breaking equation”, J. Phys.: Conf. Ser., 96 (2018), 012069 | DOI

[12] Biazar J., Ayati Z., “Exp and modified Exp function methods for nonlinear Drinfeld–Sokolov system”, J. King Saud Univ. Sci., 24 (2012), 315–318 | DOI

[13] Kumar V. S., Rezazadeh H., Eslami M. et al., “Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and dual–power law nonlinearity”, Int. J. Appl. Comput. Math., 5 (2019), 1–10 | DOI | MR

[14] Weiss J., Tabor M., Carnevale G., “The Painlevé property for partial diferential equation”, J. Math. Phys., 24 (1983), 522–526 | DOI | MR | Zbl

[15] Golse F., “On the self–similar solutions of the Broadwell model for a discrete velocity gas”, Commun. Part. Diff. Eq., 12 (1987), 315–326 | DOI | MR | Zbl

[16] Dukhnovskii S. A., “Asymptotic stability of equilibrium states for Carleman and Godunov–Sultangazin systems of equations”, Moscow Univ. Math. Bull., 74 (2019), 55–57 | DOI | MR | Zbl

[17] Dukhnovsky S., “On solutions of the kinetic McKean system”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 94 (2020), 3–11 | MR | Zbl

[18] Dukhnovsky S. A., “The tanh-function method and the ($G'/G$)-expansion method for the kinetic McKean system”, Differential Equations and Control Processes, 2021, no. 2, 87–100 | MR | Zbl

[19] Dukhnovsky S. A., “New exact solutions for the time fractional Broadwell system”, Advanced Studies: Euro-Tbilisi Mathematical Journal, 15 (2022), 53–66 | DOI | MR | Zbl

[20] Dukhnovkii S. A., “On a speed of solutions stabilization of the Cauchy problem for the Carleman equation with periodic initial data”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 21 (2017), 7–41 | MR

[21] Vasil'eva O. A., Dukhnovskii S. A., Radkevich E. V., “On the nature of local equilibrium in the Carleman and Godunov–Sultangazin equations”, J. Math. Sci., 235 (2018), 393–453 | MR

[22] Euler N., Steeb W.-H., “Painlevé Test and Discrete Boltzmann Equations”, Aust. J. Phys., 42 (1989), 1–10 | DOI | MR

[23] Ilyin O. V., “Existence and stability analysis for the Carleman kinetic system”, Comput. Math. Math. Phys., 47 (2007), 1990–2001 | DOI | MR

[24] Cornille H., “Exact (2+1)-dimensional solutions for two discrete velocity Boltzmann models with four independent densities”, J. Phys. A: Math. Gen., 20 (1987), 1063–1067 | DOI | MR

[25] Radkevich E. V., “On the large–time behavior of solutions to the Cauchy problem for a 2-dimensional discrete kinetic equation”, J. Math. Sci., 202 (2014), 735–768 | DOI | MR | Zbl