Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2022_1_a7, author = {S. A. Dukhnovsky}, title = {A self--similar solution and the tanh--function method for the kinetic {Carleman} system}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {99--110}, publisher = {mathdoc}, number = {1}, year = {2022}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a7/} }
TY - JOUR AU - S. A. Dukhnovsky TI - A self--similar solution and the tanh--function method for the kinetic Carleman system JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2022 SP - 99 EP - 110 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a7/ LA - en ID - BASM_2022_1_a7 ER -
%0 Journal Article %A S. A. Dukhnovsky %T A self--similar solution and the tanh--function method for the kinetic Carleman system %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2022 %P 99-110 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a7/ %G en %F BASM_2022_1_a7
S. A. Dukhnovsky. A self--similar solution and the tanh--function method for the kinetic Carleman system. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2022), pp. 99-110. https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a7/
[1] Godunov S.K., Sultangazin U.M., “On discrete models of the kinetic Boltzmann equation”, Russian Math. Surveys, 26 (1971), 1–56 | DOI | MR
[2] Polyanin A. D., Zaitsev V. F., Handbook of Nonlinear Partial Differential Equations, Chapman Hall/CRC Press, Boca Raton–London, 2004 | MR | Zbl
[3] Tchier F., Inc M., Yusuf A., “Symmetry analysis, exact solutions and numerical approximations for the space–time Carleman equation in nonlinear dynamical systems”, Eur. Phys. J. Plus., 134 (2019), 1–18 | DOI
[4] Kolodner I. I., Vindas J., “On the Carleman's model for the Boltzmann equation and its generalizations”, Ann. Mat. Pura Appl., 63 (1963), 11–32 | DOI | MR | Zbl
[5] Currò C., Oliveri F., “Similarity analysis and exact solutions for a general discrete two-velocity model of Boltzmann equation”, Meccanica, 22 (1987), 3–7 | DOI | MR | Zbl
[6] Lindblom O., Euler N., “Solutions of discrete-velocity Boltzmann equations via Bateman and Riccati equations”, Theoret. and Math. Phys., 131 (2002), 595–608 | DOI | MR | Zbl
[7] Zhang W., “The Extended Tanh method and the Exp–function method to solve a kind of nonlinear heat equation”, Math. Probl. Eng., 2010 (2010), 1–12 | MR
[8] Wazwaz A. M., “The tanh method: exact solutions of the sine-Gordon and the sinh–Gordon equations”, Appl. Math. Comput., 167 (2005), 1196–1210 | MR | Zbl
[9] Wazwaz A. M., “The tanh and the sine–cosine methods for the complex modified KdV and the generalized KdV equations”, Comput. Math. Appl., 49 (2005), 1101–1112 | DOI | MR | Zbl
[10] Wazwaz A. M., “A sine–cosine method for handling nonlinear wave equations”, Math. Comput. Model., 40 (2004), 499–508 | DOI | MR | Zbl
[11] Zhang W., Tian L., “An extended tanh–method and its application to the soliton breaking equation”, J. Phys.: Conf. Ser., 96 (2018), 012069 | DOI
[12] Biazar J., Ayati Z., “Exp and modified Exp function methods for nonlinear Drinfeld–Sokolov system”, J. King Saud Univ. Sci., 24 (2012), 315–318 | DOI
[13] Kumar V. S., Rezazadeh H., Eslami M. et al., “Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and dual–power law nonlinearity”, Int. J. Appl. Comput. Math., 5 (2019), 1–10 | DOI | MR
[14] Weiss J., Tabor M., Carnevale G., “The Painlevé property for partial diferential equation”, J. Math. Phys., 24 (1983), 522–526 | DOI | MR | Zbl
[15] Golse F., “On the self–similar solutions of the Broadwell model for a discrete velocity gas”, Commun. Part. Diff. Eq., 12 (1987), 315–326 | DOI | MR | Zbl
[16] Dukhnovskii S. A., “Asymptotic stability of equilibrium states for Carleman and Godunov–Sultangazin systems of equations”, Moscow Univ. Math. Bull., 74 (2019), 55–57 | DOI | MR | Zbl
[17] Dukhnovsky S., “On solutions of the kinetic McKean system”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 94 (2020), 3–11 | MR | Zbl
[18] Dukhnovsky S. A., “The tanh-function method and the ($G'/G$)-expansion method for the kinetic McKean system”, Differential Equations and Control Processes, 2021, no. 2, 87–100 | MR | Zbl
[19] Dukhnovsky S. A., “New exact solutions for the time fractional Broadwell system”, Advanced Studies: Euro-Tbilisi Mathematical Journal, 15 (2022), 53–66 | DOI | MR | Zbl
[20] Dukhnovkii S. A., “On a speed of solutions stabilization of the Cauchy problem for the Carleman equation with periodic initial data”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 21 (2017), 7–41 | MR
[21] Vasil'eva O. A., Dukhnovskii S. A., Radkevich E. V., “On the nature of local equilibrium in the Carleman and Godunov–Sultangazin equations”, J. Math. Sci., 235 (2018), 393–453 | MR
[22] Euler N., Steeb W.-H., “Painlevé Test and Discrete Boltzmann Equations”, Aust. J. Phys., 42 (1989), 1–10 | DOI | MR
[23] Ilyin O. V., “Existence and stability analysis for the Carleman kinetic system”, Comput. Math. Math. Phys., 47 (2007), 1990–2001 | DOI | MR
[24] Cornille H., “Exact (2+1)-dimensional solutions for two discrete velocity Boltzmann models with four independent densities”, J. Phys. A: Math. Gen., 20 (1987), 1063–1067 | DOI | MR
[25] Radkevich E. V., “On the large–time behavior of solutions to the Cauchy problem for a 2-dimensional discrete kinetic equation”, J. Math. Sci., 202 (2014), 735–768 | DOI | MR | Zbl