Equilibria in pure strategies for a two-player zero-sum average stochastic positional game
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2022), pp. 75-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the existence and determining equilibria in pure stationary strategies for a two-player zero-sum average stochastic positional game is considered. We show that for such a game there exists the value and players may achieve the value by applying pure stationary strategies of choosing the actions in their positions. Based on a constructive proof of these results we propose an algorithmic approach for determining the optimal pure stationary strategies of the players.
@article{BASM_2022_1_a5,
     author = {Dmitrii Lozovanu and Stefan Pickl},
     title = {Equilibria in pure strategies for a two-player zero-sum average stochastic positional game},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {75--82},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a5/}
}
TY  - JOUR
AU  - Dmitrii Lozovanu
AU  - Stefan Pickl
TI  - Equilibria in pure strategies for a two-player zero-sum average stochastic positional game
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2022
SP  - 75
EP  - 82
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a5/
LA  - en
ID  - BASM_2022_1_a5
ER  - 
%0 Journal Article
%A Dmitrii Lozovanu
%A Stefan Pickl
%T Equilibria in pure strategies for a two-player zero-sum average stochastic positional game
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2022
%P 75-82
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a5/
%G en
%F BASM_2022_1_a5
Dmitrii Lozovanu; Stefan Pickl. Equilibria in pure strategies for a two-player zero-sum average stochastic positional game. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2022), pp. 75-82. https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a5/

[1] Alpern S., “Cycles in extensive form perfect information games”, J. Math. Anal. Appl., 159 (1991), 1-17 | DOI | MR | Zbl

[2] Codon A., “The complexity of stochastic games”, Inf. Comput., 96:2 (1992), 203–224 | DOI | MR

[3] Ehrenfeucht A., Mycielski J., “Positional strategies for mean payoff games”, Int. J. Game Theory, 8 (1979), 109–113 | DOI | MR | Zbl

[4] Gurvich V., Karzaniv A., Khachyan L., “Cyclic games and an algorithm to find minimax mean cycles in directed graphs”, USSR Comput. Math. Math. Phys., 28 (1988), 85–91 | DOI | MR | Zbl

[5] Lozovanu D., “The game theoretical approach to Markov decision problems and determining Nash equilibria for stochastic positional games”, Int. J. Mathematical Modelling and Numerical Optimization, 2:2 (2011), 162–174 | DOI | Zbl

[6] Lozovanu D., “Stationary Nash equilibria for average stochastic positional games”, Frontiers of dynamic games, Static and Dynamic Games Theory: Fondation and Applications, eds. Petrosyan et al, Birkhäuser, 2018, 139–163 | DOI | MR | Zbl

[7] Lozovanu D., Pickl S., “Nash equilibria conditions for cyclic games with $p$ players”, Electron. Notes in Discrete Math., 25 (2006), 117–124 | DOI | MR

[8] Lozovanu D., Pickl S., Optimization and Multiobjective Control of Time-Discrete Systems, Springer, 2009 | MR | Zbl

[9] Lozovanu D., Pickl S., “Determining the optimal strategies for zero-sum average stochastic positional games”, Electron. Notes Discrete Math., 55 (2016), 155–159 | DOI | Zbl

[10] Lozovanu D., Pickl S., “Nash equilibria in Mixed Stationary Strategies for $m$-player mean payoff games on networks”, Contribution Game Theory Manag., 11 (2018), 103–112 | MR

[11] Puterman M., Markov Decision Processes: Discrete Dynamic Programming, Wiley, 2005 | MR | Zbl

[12] Zwick U., Paterson M., “The complexity of mean payoff games on graphs”, Theoretical Computer Science, 158 (1996), 343–359 | DOI | MR | Zbl