Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2022_1_a5, author = {Dmitrii Lozovanu and Stefan Pickl}, title = {Equilibria in pure strategies for a two-player zero-sum average stochastic positional game}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {75--82}, publisher = {mathdoc}, number = {1}, year = {2022}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a5/} }
TY - JOUR AU - Dmitrii Lozovanu AU - Stefan Pickl TI - Equilibria in pure strategies for a two-player zero-sum average stochastic positional game JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2022 SP - 75 EP - 82 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a5/ LA - en ID - BASM_2022_1_a5 ER -
%0 Journal Article %A Dmitrii Lozovanu %A Stefan Pickl %T Equilibria in pure strategies for a two-player zero-sum average stochastic positional game %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2022 %P 75-82 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a5/ %G en %F BASM_2022_1_a5
Dmitrii Lozovanu; Stefan Pickl. Equilibria in pure strategies for a two-player zero-sum average stochastic positional game. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2022), pp. 75-82. https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a5/
[1] Alpern S., “Cycles in extensive form perfect information games”, J. Math. Anal. Appl., 159 (1991), 1-17 | DOI | MR | Zbl
[2] Codon A., “The complexity of stochastic games”, Inf. Comput., 96:2 (1992), 203–224 | DOI | MR
[3] Ehrenfeucht A., Mycielski J., “Positional strategies for mean payoff games”, Int. J. Game Theory, 8 (1979), 109–113 | DOI | MR | Zbl
[4] Gurvich V., Karzaniv A., Khachyan L., “Cyclic games and an algorithm to find minimax mean cycles in directed graphs”, USSR Comput. Math. Math. Phys., 28 (1988), 85–91 | DOI | MR | Zbl
[5] Lozovanu D., “The game theoretical approach to Markov decision problems and determining Nash equilibria for stochastic positional games”, Int. J. Mathematical Modelling and Numerical Optimization, 2:2 (2011), 162–174 | DOI | Zbl
[6] Lozovanu D., “Stationary Nash equilibria for average stochastic positional games”, Frontiers of dynamic games, Static and Dynamic Games Theory: Fondation and Applications, eds. Petrosyan et al, Birkhäuser, 2018, 139–163 | DOI | MR | Zbl
[7] Lozovanu D., Pickl S., “Nash equilibria conditions for cyclic games with $p$ players”, Electron. Notes in Discrete Math., 25 (2006), 117–124 | DOI | MR
[8] Lozovanu D., Pickl S., Optimization and Multiobjective Control of Time-Discrete Systems, Springer, 2009 | MR | Zbl
[9] Lozovanu D., Pickl S., “Determining the optimal strategies for zero-sum average stochastic positional games”, Electron. Notes Discrete Math., 55 (2016), 155–159 | DOI | Zbl
[10] Lozovanu D., Pickl S., “Nash equilibria in Mixed Stationary Strategies for $m$-player mean payoff games on networks”, Contribution Game Theory Manag., 11 (2018), 103–112 | MR
[11] Puterman M., Markov Decision Processes: Discrete Dynamic Programming, Wiley, 2005 | MR | Zbl
[12] Zwick U., Paterson M., “The complexity of mean payoff games on graphs”, Theoretical Computer Science, 158 (1996), 343–359 | DOI | MR | Zbl