Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2022_1_a2, author = {David Cheban}, title = {Different types of compact global attractors for cocycles with a noncompact phase space of driving system and the relationship between them}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {35--55}, publisher = {mathdoc}, number = {1}, year = {2022}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a2/} }
TY - JOUR AU - David Cheban TI - Different types of compact global attractors for cocycles with a noncompact phase space of driving system and the relationship between them JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2022 SP - 35 EP - 55 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a2/ LA - en ID - BASM_2022_1_a2 ER -
%0 Journal Article %A David Cheban %T Different types of compact global attractors for cocycles with a noncompact phase space of driving system and the relationship between them %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2022 %P 35-55 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a2/ %G en %F BASM_2022_1_a2
David Cheban. Different types of compact global attractors for cocycles with a noncompact phase space of driving system and the relationship between them. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2022), pp. 35-55. https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a2/
[1] Arnold L., Random Dynamical Systems, Springer-Verlag, 1998 | MR
[2] Babin A. V., Vishik M. I., “Regular Attractor of Semi-Groups and Evolutional Equations”, Journal Math. Pures et Appl., 62 (1983), 172–189 | MR
[3] Extensions of Minimal Transformation Group, Sijthoff Noordhoff, Alphen aan den Rijn, The Netherlands Germantown, Maryland USA, 1979
[4] Carvalho A. N., Langa J. A., Robinson J. C., Attractors for Infinite-Dimensional Nonautonomous Dynamical Systems, Applied Mathematical Sciences, 182, Springer, New York, 2013, xxxvi+409 pp. | DOI | MR
[5] Cheban D. N., “Global Attractors of Infinite-Dimensional Nonautonomous Dynamical Systems, I”, Bulletin of Academy of Sciences of Republic of Moldova. Mathematics, 1997, no. 3(25), 42–55 (in Russian) | MR | Zbl
[6] Cheban D. N., “Global Pullback Atttactors of C-Analytic Nonautonomous Dynamical Systems”, Stochastics and Dynamics, 1:4 (2001), 511–535 | DOI | MR | Zbl
[7] Cheban D. N., Global Attractors of Set-Valued Dynamical and Control Systems, Nova Science Publishers Inc, New York, 2010, xvii+269 pp. | MR
[8] Cheban D. N., Global Attractors of Non-Autonomous Dissipstive Dynamical Systems, Interdisciplinary Mathematical Sciences, 1, World Scientific, River Edge, NJ, 2004, 502 pp. | DOI | MR
[9] Cheban D. N., Global Attractors of Nonautonomous Dynamical and Control Systems, Interdisciplinary Mathematical Sciences, 18, 2nd Edition, World Scientific, River Edge, NJ, 2015, 589 pp. | DOI | MR
[10] Cheban D. N., Kloeden P. E., Schmalfuss B., “Relation Between Pullback and Global Attractors of Nonautonomous Dynamical Systems”, Nonlinear Dynamics and Systems Theory, 2:2 (2002), 9–28 | MR
[11] Chepyzhov V. V., Vishik M. I., Attractors for Equations of Mathematical Physics, Amer. Math. Soc., Providence, RI, 2002, xi+363 pp. | MR | Zbl
[12] Chueshov I. D., Introduction to the Theory of Infinite-Dimensional Dissipative Systems, University Lectures in Contemporary Mathematics, AKTA, Kharkiv, 1999, 436 pp. (in Russian) | MR | Zbl
[13] Flandoli F., Schmalfuß B., “Random Attractors for the Stochastic 3D Navier–Stokes Equation with Multiplicative White Noise”, Stochastics and Stochastics Reports, 59 (1996), 21–45 | DOI | MR | Zbl
[14] Fort M. K., “Points of continuity of semicontinuous functions”, Publ. Math., 1951, no. 2, Debrecen, 100–102 | MR | Zbl
[15] Gledininning P., “Global attractors of pinched skew products”, Dynamical Systems, 17:3 (2002), 287–294 | DOI | MR
[16] Grebogi C., Ott E., Pelikan S., Yorke J. A., “Strange attractors that are not chaotic”, Physica D, 13 (1984), 261–268 | DOI | MR | Zbl
[17] Hale J. K., Asymptotic Behaviour of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988, vii+196 pp. | MR
[18] Haraux A., Systèmes Dynamiques Dissipativs et Applications, Masson, Paris–Milan–Barselona–Rome, 1991, x+130 pp. | MR
[19] Kloeden P. E., “Pullback attractors of non-autonomous semidynamical systems”, Stochstics and Dynamics, 3:1 (2003), 101–112 | DOI | MR | Zbl
[20] Kloeden P. E., Rasmussen M., Nonautonomous Dynamical Systems, American Mathematical Society, Providence, Rhode Island, 2011, vii+264 pp. | MR | Zbl
[21] Kloeden P. E., Schmalfuß B., “Cocycle Attractors of Variable Time Step Discretizations of Lorenzian Systems”, J. Difference Eqns. Applns., 3 (1997), 125–145 | DOI | MR | Zbl
[22] Kuratovskii K., Topology, v. 1, 2, Mir, M., 1966 | MR
[23] Ladyzhenskaya O. A., Attractors for Semigroups and Evolution Equations, Lizioni Lincei, Cambridge Univ. Press, Cambridge, New-York, 1991, xi+73 pp. | MR
[24] Robinson J. C., Infinite-Dimensional Dynamical Systems, Cambridge University Press, 2001, xvii+461 pp. | MR
[25] Sell G. R., Lectures on Topological Dynamics and Differential Equations, Van Nostrand–Reinbold, London, 1971, ix+199 pp. | MR
[26] Temam T., Infinite–Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer Verlag, New York, 1997 | MR | Zbl