Subordination and superordination for certain analytic functions associated with Ruscheweyh derivative and a new generalised multiplier transformation
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2022), pp. 22-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we study the operator defined by using Ruscheweyh derivative Rm and new generalized multiplier transformation $$ \mathcal{D}^{m}_{\lambda_{1},\lambda_{2},\ell,d }f(z) =z+\sum_{k=n+1}^{\infty}\left[\dfrac{\ell(1+(\lambda_{1}+\lambda_{2})(k-1))+d}{\ell(1+\lambda_{2}(k-1))+d}\right]^m a_kz^{k}$$ denoted by RDλ1,λ2,,dm,α:AnAn, RDλ1,λ2,,dm,αf(z)=(1α)Rmf(z)+αDλ1,λ2,,dmf(z), where An={fH(U),f(z)=z+an+1zn+1+an+2zn+2+...,zU} is the class of normalized analytic functions with A1=A. We obtain several differential subordinations associated with the operator RDλ1,λ2,,dm,αf(z). Further, sandwich-type results for this operator are considered.
@article{BASM_2022_1_a1,
     author = {Anessa Oshah and Maslina Darus},
     title = {Subordination and superordination for certain analytic functions associated with {Ruscheweyh} derivative and a new generalised multiplier transformation},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {22--34},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a1/}
}
TY  - JOUR
AU  - Anessa Oshah
AU  - Maslina Darus
TI  - Subordination and superordination for certain analytic functions associated with Ruscheweyh derivative and a new generalised multiplier transformation
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2022
SP  - 22
EP  - 34
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a1/
LA  - en
ID  - BASM_2022_1_a1
ER  - 
%0 Journal Article
%A Anessa Oshah
%A Maslina Darus
%T Subordination and superordination for certain analytic functions associated with Ruscheweyh derivative and a new generalised multiplier transformation
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2022
%P 22-34
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a1/
%G en
%F BASM_2022_1_a1
Anessa Oshah; Maslina Darus. Subordination and superordination for certain analytic functions associated with Ruscheweyh derivative and a new generalised multiplier transformation. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2022), pp. 22-34. https://geodesic-test.mathdoc.fr/item/BASM_2022_1_a1/

[1] Al-Oboudi F.M., “On univalent functions defined by derivative operator”, International Journal of Mathematics and Mathematical Sciences, 27 (2004), 1429–1436 | DOI | MR

[2] Bulboaca T., “Classes of first order differential superordinations”, Demonstratio Math., 35:2 (2002), 287–292 | MR | Zbl

[3] Cǎtaş A., “Class of analytic functions associated with new multiplier transformations and hypergeometric function”, Taiwanese J. Math., 14:2 (2010), 403–412 | MR

[4] Cho N.E., Srivastava H. M., “Argument estimates of certain analytic functions defined by a class of multiplier transformations”, Math. Comput. Modelling, 37:1-2 (2003), 39–49 | DOI | MR | Zbl

[5] Ibrahim R. W., Darus M., Momani S., “Subordination and superordination for certain analytic functions containing fractional integral”, Surv. Math. Appl., 4 (2009), 111–117 | MR | Zbl

[6] Faisal I., Darus M., Shareef Z., Hussain S., “Sandwich theorems for analytic functions involving generalized integral operator”, Acta Univ. Apulensis Math. Inform., 30 (2012), 107–120 | MR | Zbl

[7] Lupaş A. A., “On special differential subordinations using a generalized Sălăgean operator and Ruscheweyh derivative”, J. Comput. Anal. Appl., 13:1 (2011), 98–107 | MR | Zbl

[8] Lupaş A. A., “On a certain subclass of analytic functions defined by a generalized Sălăgean operator and Ruscheweyh derivative”, Carpathian J. Math., 28:2 (2012), 183–190 | DOI | MR | Zbl

[9] Lupaş A. A., “On special differential superordinations using a generalized Sălăgean operator and Ruscheweyh derivative”, Comput. Math. Appl., 61:4 (2011), 1048–1058 | DOI | MR | Zbl

[10] Lupaş A. A., “Certain special differential superordinations using a generalized Sǎlǎgean operator and Ruscheweyh derivative”, Ann. Univ. Oradea, Fasc. Mat., XVIII (2011), 167–178 | MR | Zbl

[11] Lupaş A. A., “On special differential subordinations using multiplier transformation and Ruscheweyh derivative”, Romai Journal, 6:2 (2010), 1–14 | MR | Zbl

[12] Lupaş A. A., “On special differential subordinations using Sălăgean and Ruscheweyh operators”, Math. Inequal. Appl., 12:4 (2009), 781–790 | MR | Zbl

[13] Lupaş A. A., “On a certain subclass of analytic functions defined by Sălăgean and Ruscheweyh operators”, J. Math. Appl., 31 (2009), 67–76 | MR | Zbl

[14] Lupaş A. A., “Some differential subordinations using Ruscheweyh derivative and Sălăgean operator”, Adv. Differ. Equa., 150 (2013) | DOI | MR | Zbl

[15] Lupaş A.A., Breaz D., “On special differential superordinations using Sălăgean and Ruscheweyh operators”, Geometric Function Theory and Applications, Proc. of International Symposium (Sofia, 27-31 August 2010), 2010, 98–103 | MR

[16] Lupaş A. A., “Certain differential superordinations using a multiplier transformation and Ruscheweyh derivative”, Buletinul Academiei de Stinte A Republicii Moldova. MATEMATICA, 2013, no. 2(72)-3(73), 119–131 | MR | Zbl

[17] Miller S. S., Mocanu P. T., “Differential subordinations and univalent functions”, The Michigan Mathematical Journal, 28:2 (1981), 157–172 | DOI | MR

[18] Miller S. S., Mocanu P. T., Differential Subordinations: Theory and Applications, Pure and Applied Mathematics, 225, Marcel Dekker, New York, 2000 | MR | Zbl

[19] Miller S. S., Mocanu P. T., “Subordinates of differential superordinations”, Complex Var. Elliptic Equ., 48:10 (2003), 815–826 | MR | Zbl

[20] Miller S. S., Mocanu P. T., “Second order differential inequalities in the complex plane”, J. Math. Anal. Appl., 65 (1978), 298–305 | DOI | MR

[21] Oshah A., Darus M., “Differential sandwich theorems with a new generalized derivative operator”, Advances in Mathematics: Scientific Journal, 3:2 (2014), 117–124 | MR | Zbl

[22] Ravichandran V., Darus M., Hussain Khan M., Subramanian K. G., “Differential subordination associated with linear operators defined for multivalent functions”, Acta Math. Vietnam, 30:2 (2005), 113–121 | MR | Zbl

[23] Ruscheweyh S., “A new criteria for univalent function”, Proc. Amer. Math. Soc., 49 (1975), 109–115 | DOI | MR | Zbl

[24] Swamy S. R., “Inclusion properties of certain subclasses of analytic functions”, International Mathematical Forum, 7:36 (2012), 1751–1760 | MR | Zbl

[25] Swamy S. R., “A note on a subclass of analytic functions defined by Ruscheweyh derivative and a new generalised multiplier transformation”, J. Math. Computer Sci., 2:4 (2012), 784–792 | MR

[26] Swamy S. R., “Differential sandwich theorems for certain subclasses of analytic functions defined by a new linear derivative operator”, J. Math. Computer Sci., 2:6 (2012), 1785–180 | MR