On differentially prime subsemimodules
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2021), pp. 30-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the investigation of the notion of a differentially prime subsemimodule of a differential semimodule over a commutative semiring, which generalizes the notion of differentially prime ideal of a ring. The characterization of differentially prime subsemimodules is given. The interrelation between differentially prime subsemimodules and different types of differential subsemimodules and ideals is studied.
@article{BASM_2021_3_a3,
     author = {Ivanna Melnyk},
     title = {On differentially prime subsemimodules},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {30--35},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2021_3_a3/}
}
TY  - JOUR
AU  - Ivanna Melnyk
TI  - On differentially prime subsemimodules
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2021
SP  - 30
EP  - 35
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2021_3_a3/
LA  - en
ID  - BASM_2021_3_a3
ER  - 
%0 Journal Article
%A Ivanna Melnyk
%T On differentially prime subsemimodules
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2021
%P 30-35
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2021_3_a3/
%G en
%F BASM_2021_3_a3
Ivanna Melnyk. On differentially prime subsemimodules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2021), pp. 30-35. https://geodesic-test.mathdoc.fr/item/BASM_2021_3_a3/

[1] Atani R. E,, Atani S. E., “On subsemimodules of semimodules”, Bul. Acad. Stiinte Repub. Moldova. Matematica, 2:63 (2010), 20–30 | MR | Zbl

[2] Chandramouleeswaran M., Thiruveni V., “On derivations of semirings”, Advances in Algebra, 1:1 (2010), 123–131 | MR

[3] Golan J. S., Semirings and their Applications, Kluwer Academic Publishers, 1999 | MR | Zbl

[4] Hebisch U., Weinert H. J., Semirings: Algebraic Theory and Applications in Computer Science, World Scientific, 1998 | MR | Zbl

[5] Kaplansky I., Introduction to differential algebra, Graduate Texts in Mathematics, 189, Springer-Verlag, New York, 1999

[6] Keigher W., “Prime differential ideals in differential rings”, Contributions to Algebra, A Collection of Papers Dedicated to Ellis Kolchin, Academic Press, 1977, 239–249 | DOI | MR

[7] Keigher W. F., “Quasi-prime ideals in differential rings”, Houston J. Math., 4:3 (1978), 379–388 | MR | Zbl

[8] Khadjiev Dj., Çall{\i}alp F., “On a differential analog of the prime-radical and properties of the lattice of the radical differential ideals in associative differential rings”, Tr. J. of Math., 4:20 (1996), 571–582 | MR | Zbl

[9] Kolchin S. E., Differential Algebra and Algebraic Groups, Academic Press, New York, 1973 | MR | Zbl

[10] Melnyk I., “$Sdm$-systems, differentially prime and differentially primary modules”, Nauk. visnyk Uzhgorod. Univ. Ser. Math. and informat., 16 (2008), 110–118 (Ukrainian) | MR | Zbl

[11] Melnyk I., “On the radical of a differential semiring ideal”, Visnyk of the Lviv. Univ. Series Mech. Math., 82 (2016), 163–173

[12] Melnyk I., “On quasi-prime differential semiring ideals”, Nauk. visnyk Uzhgorod. Univ. Ser. Math. and informat., 37:2 (2020), 63–69

[13] Nirmala Devi S. P., Chandramouleeswaran M., “$\left(\alpha ,1\right)$-derivations on semirings”, International Journal of Pure and Applied Mathematics, 4:92 (2014), 525–534 | Zbl

[14] Nowicki A., “The primary decomposition of differential modules”, Commentationes Mathematicae, 21 (1979), 341–346 | MR | Zbl

[15] Nowicki A., “Some remarks on $d-MP$-rings”, Bulletin of the Polish Academy of Sciences. Mathematics, 30:7-8, 311–317 | MR | Zbl