Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2021_1_a6, author = {Maria Capcelea and Titu Capcelea}, title = {Localization of singular points of meromorphic functions based on interpolation by rational functions}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {110--120}, publisher = {mathdoc}, number = {1}, year = {2021}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a6/} }
TY - JOUR AU - Maria Capcelea AU - Titu Capcelea TI - Localization of singular points of meromorphic functions based on interpolation by rational functions JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2021 SP - 110 EP - 120 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a6/ LA - en ID - BASM_2021_1_a6 ER -
%0 Journal Article %A Maria Capcelea %A Titu Capcelea %T Localization of singular points of meromorphic functions based on interpolation by rational functions %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2021 %P 110-120 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a6/ %G en %F BASM_2021_1_a6
Maria Capcelea; Titu Capcelea. Localization of singular points of meromorphic functions based on interpolation by rational functions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 110-120. https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a6/
[1] H. Kang, H. Lee, “Identification of Simple Poles via Boundary Measurements and an Application of EIT”, Inverse Problems, 20 (2004), 1853–1863 | DOI | MR | Zbl
[2] Miller K., “Stabilized numerical analytic prolongation with poles”, SIAM J. Appl. Math., 18 (1970), 346–363 | DOI | MR | Zbl
[3] Nara T., Ando S., “Direct localization of poles of a meromorphic function from measurements on an incomplete boundary”, Inverse Problems, 26 (2010), 1–26 | DOI | MR | Zbl
[4] Capcelea M., Capcelea T., “Laurent-Padé approximation for locating singularities of meromorphic functions with values given on simple closed contours”, Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, 2020, no. 2(93), 76–87 | MR | Zbl
[5] Capcelea M., Capcelea T., “Algorithm for the localization of singularities of functions defined on closed contours”, Proceedings of the 4th Conference of Mathematical Society of Moldova, CMSM4-2017 (June 28-July 2, 2017, Chisinau, Republic of Moldova), 369–372
[6] Gonnet P., Pachon R., Trefethen L., “Robust rational interpolation and least-squares”, Electronic Transactions on Numerical Analysis, 38 (2011), 146–167 | MR | Zbl
[7] Saff E., “An extension of Montessus de Ballore's theorem on the convergence of interpolating rational functions”, Journal of Approximation Theory, 6 (1972), 63–67 | DOI | MR | Zbl
[8] Saff E., Walsh J., “On the convergence of rational functions which interpolate in the roots of unity”, Pacific Journal of Mathematics, 45 (1973), 639–641 | DOI | MR | Zbl
[9] Yan C.-D., Chieng W.-H., “Method for finding multiple roots of polynomials”, Computers and Mathematics with Applications, 51 (2006), 605–620 | DOI | MR | Zbl
[10] Gonnet P., Guttel S., Trefethen L. N., “Robust Padé approximation via SVD”, SIAM Review, 55:1 (2013), 101–117 | DOI | MR | Zbl