Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2021_1_a5, author = {Alexandru Lazari}, title = {Algebraic view over homogeneous linear recurrent processes}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {99--109}, publisher = {mathdoc}, number = {1}, year = {2021}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a5/} }
TY - JOUR AU - Alexandru Lazari TI - Algebraic view over homogeneous linear recurrent processes JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2021 SP - 99 EP - 109 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a5/ LA - en ID - BASM_2021_1_a5 ER -
Alexandru Lazari. Algebraic view over homogeneous linear recurrent processes. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 99-109. https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a5/
[1] Avendaño M., Descartes' rule of signs is exact!, Journal of Algebra, 324 (2010), 2884–2892 | DOI | MR | Zbl
[2] Drungilas P., Jankauskas J., Šiurys J., “On Littlewood and Newman polynomial multiples of Borwein polynomials”, Math. Comp., 87 (2018), 1523–1541 | DOI | MR | Zbl
[3] Dubickas A., “The divisors of Newman polynomials”, Fizikos ir matematikos fakulteto, Seminaro darbai, Šiauliu̧ universitetas, 6 (2003), 25–28 | MR | Zbl
[4] Dubickas A., Jankauskas J., “On Newman polynomials which divide no Littlewood polynomial”, Mathematics of Computation, 78:265 (2009), 327–344 | DOI | MR | Zbl
[5] Lazari A., “Algorithms for Determining the Transient and Differential Matrices in Finite Markov Processes”, Bulletin of the Academy of Science of RM, Matematica, 2:63 (2010), 84–99 | MR | Zbl
[6] Lazari A., Lozovanu D., Capcelea M., Dynamical deterministic and stochastic systems: Evolution, optimization and discrete optimal control, CEP USM, Chişinău, 2015, 310 pp. (in Romanian) | MR
[7] Odlyzko A., Poonen B., “Zeros of polynomials with 0, 1 coefficients”, Enseign. Math. (2), 39 (1993), 317–348 | MR | Zbl