Algebraic view over homogeneous linear recurrent processes
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 99-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the algebraic properties of the deterministic processes with dynamic represented by a homogeneous linear recurrence over the field C are studied. It is started with an overview of homogeneous linear recurrent processes over C and its subsets. Next, it is gone deeper into homogeneous linear recurrent processes over numerical rings. After that, the recurrence criteria over sign-based ring subsets are analyzed. Also, the deterministic processes with dynamic represented by a Littlewood, Newman or Borwein homogeneous linear recurrence are considered.
@article{BASM_2021_1_a5,
     author = {Alexandru Lazari},
     title = {Algebraic view over homogeneous linear recurrent processes},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {99--109},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a5/}
}
TY  - JOUR
AU  - Alexandru Lazari
TI  - Algebraic view over homogeneous linear recurrent processes
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2021
SP  - 99
EP  - 109
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a5/
LA  - en
ID  - BASM_2021_1_a5
ER  - 
%0 Journal Article
%A Alexandru Lazari
%T Algebraic view over homogeneous linear recurrent processes
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2021
%P 99-109
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a5/
%G en
%F BASM_2021_1_a5
Alexandru Lazari. Algebraic view over homogeneous linear recurrent processes. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 99-109. https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a5/

[1] Avendaño M., Descartes' rule of signs is exact!, Journal of Algebra, 324 (2010), 2884–2892 | DOI | MR | Zbl

[2] Drungilas P., Jankauskas J., Šiurys J., “On Littlewood and Newman polynomial multiples of Borwein polynomials”, Math. Comp., 87 (2018), 1523–1541 | DOI | MR | Zbl

[3] Dubickas A., “The divisors of Newman polynomials”, Fizikos ir matematikos fakulteto, Seminaro darbai, Šiauliu̧ universitetas, 6 (2003), 25–28 | MR | Zbl

[4] Dubickas A., Jankauskas J., “On Newman polynomials which divide no Littlewood polynomial”, Mathematics of Computation, 78:265 (2009), 327–344 | DOI | MR | Zbl

[5] Lazari A., “Algorithms for Determining the Transient and Differential Matrices in Finite Markov Processes”, Bulletin of the Academy of Science of RM, Matematica, 2:63 (2010), 84–99 | MR | Zbl

[6] Lazari A., Lozovanu D., Capcelea M., Dynamical deterministic and stochastic systems: Evolution, optimization and discrete optimal control, CEP USM, Chişinău, 2015, 310 pp. (in Romanian) | MR

[7] Odlyzko A., Poonen B., “Zeros of polynomials with 0, 1 coefficients”, Enseign. Math. (2), 39 (1993), 317–348 | MR | Zbl