Maximum nontrivial convex cover number of join and corona of graphs
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 93-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let G be a connected graph. We say that a set SX(G) is convex in G if, for any two vertices x,yS, all vertices of every shortest path between x and y are in S. If 3|S||X(G)|1, then S is a nontrivial set. The greatest p2 for which there is a cover of G by p nontrivial and convex sets is the maximum nontrivial convex cover number of G. In this paper, we determine the maximum nontrivial convex cover number of join and corona of graphs.
@article{BASM_2021_1_a4,
     author = {Radu Buzatu},
     title = {Maximum nontrivial convex cover number of join and corona of graphs},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {93--98},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a4/}
}
TY  - JOUR
AU  - Radu Buzatu
TI  - Maximum nontrivial convex cover number of join and corona of graphs
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2021
SP  - 93
EP  - 98
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a4/
LA  - en
ID  - BASM_2021_1_a4
ER  - 
%0 Journal Article
%A Radu Buzatu
%T Maximum nontrivial convex cover number of join and corona of graphs
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2021
%P 93-98
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a4/
%G en
%F BASM_2021_1_a4
Radu Buzatu. Maximum nontrivial convex cover number of join and corona of graphs. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 93-98. https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a4/

[1] Haynes T. W., Hedetniemi S. T., Slater P. J., Fundamentals of domination in graphs, CRC press, 1998 | MR

[2] Hedetniemi S. M., Hedetniemi S. T., Jacobs D. P., “Private domination: theory and algorithms”, Congressus Numeratium, 79 (1990), 147–157 | MR | Zbl

[3] Boltyansky V., Soltan P., Combinatorial geometry of various classes of convex sets, Shtiintsa, Kishinev, 1978 (in Russian) | MR | Zbl

[4] Buzatu R., Cataranciuc S., “Convex graph covers”, Computer Science Journal of Moldova, 23:3 (69) (2015), 251–269 | MR | Zbl

[5] Buzatu R., “On the computational complexity of optimization convex covering problems of graphs”, Computer Science Journal of Moldova, 28:2 (83) (2020), 187–200 | MR | Zbl

[6] Buzatu R., “Binary linear programming approach to graph convex covering problems”, Bulletin of Academy of Sciences of Republic of Moldova, Mathematics, 2019, no. 3 (91), 54–59 | MR | Zbl

[7] Buzatu R., Cataranciuc S., “Nontrivial convex covers of trees”, Bulletin of Academy of Sciences of Republic of Moldova, Mathematics, 2016, no. 3 (82), 72–81 | MR | Zbl

[8] Buzatu R., Cataranciuc S., “On nontrivial covers and partitions of graphs by convex sets”, Computer Science Journal of Moldova, 26:1 (76) (2018), 3–14 | MR | Zbl

[9] Canoy S. R., Garces I. J. L., “Convex sets under some graph operations”, Graphs and Combinatorics, 18:4 (2002), 787–793 | DOI | MR | Zbl

[10] Canoy S. R., Laja L., “Convex sets in the corona and conjunction of graphs”, Congressus Numerantium, 180 (2006), 207 | MR | Zbl