On non-discrete topologization of some countable skew fields
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 84-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

If for any finite subset M of a countable skew field R there exists an infinite subset SR such that rm=mr for any rS and for any mM, then the skew field R admits: – A non-discrete Hausdorff skew field topology τ0. – Continuum of non-discrete Hausdorff skew field topologies which are stronger than the topology τ0 and such that sup{τ1,τ2} is the discrete topology for any different topologies τ1 and τ2; – Continuum of non-discrete Hausdorff skew field topologies which are stronger than τ0 and such that any two of these topologies are comparable; – Two to the power of continuum Hausdorff skew field topologies stronger than τ0, and each of them is a coatom in the lattice of all skew field topologies of the skew fields.
@article{BASM_2021_1_a3,
     author = {V. I. Arnautov and G. N. Ermakova},
     title = {On non-discrete topologization of some countable skew fields},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {84--92},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a3/}
}
TY  - JOUR
AU  - V. I. Arnautov
AU  - G. N. Ermakova
TI  - On non-discrete topologization of some countable skew fields
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2021
SP  - 84
EP  - 92
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a3/
LA  - en
ID  - BASM_2021_1_a3
ER  - 
%0 Journal Article
%A V. I. Arnautov
%A G. N. Ermakova
%T On non-discrete topologization of some countable skew fields
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2021
%P 84-92
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a3/
%G en
%F BASM_2021_1_a3
V. I. Arnautov; G. N. Ermakova. On non-discrete topologization of some countable skew fields. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 84-92. https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a3/

[1] Markov A. A., “On absolutely closed sets”, Mat. Sb., 18 (1945), 3–28 (in Russian)

[2] Arnautov V. I., Glavatsky S. T., Mikhalev A. V., Introduction to the topological rings and modules, Marcel Dekker, inc., New York–Basel–Hong Kong, 1996 | MR | Zbl

[3] Arnautov V. I., “Non-discrete topologizability of countable rings”, DAN SSSR, 191 (1970), 747–750 (in Russian) | MR | Zbl

[4] Arnautov V. I., Ermakova G. N., “On the number of metrizable group topologies on countable groups”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2013, no. 2(72)–3(73), 17–26 | MR | Zbl

[5] Arnautov V. I., Ermakova G. N., “On the number of group topologies on countable groups”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2014, no. 1(74), 101–112 | MR | Zbl

[6] Arnautov V. I., Ermakova G. N., “On the number of ring topologies on countable rings”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2015, no. 1(77), 103–114 | MR | Zbl

[7] Arnautov V. I., Ermakova G. N., “On the number of topologies on countable fields”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2019, no. 1(89), 79–90 | MR | Zbl

[8] Arnautov V. I., Ermakova G. N., “On the number of topologies on countable skew fields”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2020, no. 1(92), 63–74 | MR | Zbl

[9] Carl Faith, Algebra: Ring, modules and categories, Springer–Verlag, Berlin–Heldelberg–New York, 1973 | MR