Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2021_1_a2, author = {Houari Fettouch and Saada Hamouda}, title = {Local growth of solutions of linear differential equations with analytic coefficients of finite iterated order}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {69--83}, publisher = {mathdoc}, number = {1}, year = {2021}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a2/} }
TY - JOUR AU - Houari Fettouch AU - Saada Hamouda TI - Local growth of solutions of linear differential equations with analytic coefficients of finite iterated order JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2021 SP - 69 EP - 83 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a2/ LA - en ID - BASM_2021_1_a2 ER -
%0 Journal Article %A Houari Fettouch %A Saada Hamouda %T Local growth of solutions of linear differential equations with analytic coefficients of finite iterated order %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2021 %P 69-83 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a2/ %G en %F BASM_2021_1_a2
Houari Fettouch; Saada Hamouda. Local growth of solutions of linear differential equations with analytic coefficients of finite iterated order. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 69-83. https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a2/
[1] Belaidi B., Hamouda S., “Orders of solutions of an n-th order linear differential equations with entire coefficients”, Electron. J. Differential Equations, 2001:63 (2001), 1–5 | MR
[2] Bieberbach L., Theorie der gewöhnlichen Differentialgleichungen, Springer-Verlag, Berlin–Heidelberg–New York, 1965 | MR
[3] Chen Z. X., Yang C. C., “Some further results on zeros and growths of entire solutions of second order linear differential equations”, Kodai Math. J., 22 (1999), 273–285 | MR | Zbl
[4] Fettouch H., Hamouda S., “Growth of local solutions to linear differential equations around an isolated essential singularity”, Electron. J. Differential Equations, 2016:226 (2016), 1–10 | MR
[5] Hamouda S., “Properties of solutions to linear differential equations with analytic coefficients in the unit disc”, Electron. J. Differential Equations, 2012:177 (2012), 1–9 | MR | Zbl
[6] Hamouda S., “Iterated order of solutions of linear differential equations in the unit disc”, Comput. Methods Funct. Theory, 13:4 (2013), 545–555 | DOI | MR | Zbl
[7] Hamouda S., “The possible orders of growth of solutions to certain linear differential equations near a singular point”, J. Math. Anal. Appl., 458 (2018), 992–1008 | DOI | MR | Zbl
[8] Hayman W. K., Meromorphic functions, Clarendon Press, Oxford, 1964 | MR | Zbl
[9] Khrystiyanyn A. Ya., Kondratyuk A. A., “On the Nevanlinna theory for meromorphic functions on annuli”, Matematychni Studii, 23:1 (2005), 19–30 | MR | Zbl
[10] Kondratyuk A. A., Laine I., “Meromorphic functions in multiply connected domains”, Fourier Series Methods in Complex Analysis, Univ. Joensuu Dept. Math. Rep. Ser., 10, Univ. Joensuu, Joensuu, 2006, 9–111 | MR | Zbl
[11] Korhonen R., “Nevanlinna theory in an annulus”, Value Distribution Theory and Related Topics, Adv. Complex Anal. Appl., 3, Kluwer Acad. Publ., Boston, MA, 2004, 167–179 | MR | Zbl
[12] Laine I., Nevanlinna theory and complex differential equations, W. de Gruyter, Berlin, 1993 | MR
[13] Mark E. L., Zhuan Y., “Logarithmic derivatives in annulus”, J. Math. Anal. Appl., 356 (2009), 441–452 | DOI | MR | Zbl
[14] Tsuji M., Potential theory in modern function theory, reprint of the 1959 edition, Chelsea, New York, 1975 | MR | Zbl
[15] Tu J., Chen Z. X., Zheng X. Z., “Growth of solutions of complex differential equations with coefficients of finite iterated order”, Electron. J. Differential Equations, 2006:54 (2006), 1–8 | MR
[16] Tu J., Yi C.-F., “On the growth of solutions of a class of higher order linear differential equations with coefficients having the same order”, J. Math. Anal. Appl., 340 (2008), 487–497 | DOI | MR | Zbl
[17] Wittaker J. M., “The order of the derivative of a meromorphic function”, J. London Math. Soc., 11 (1936), 82–87, Jbuch 62, 357 | DOI | MR
[18] Yang L., Value distribution theory, Springer-Verlag Science Press, Berlin-Beijing, 1993 | MR | Zbl