Local growth of solutions of linear differential equations with analytic coefficients of finite iterated order
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 69-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate the iterated order of growth of solutions to certain homogeneous and non–homogeneous linear differential equations where the coefficients are analytic functions in the closed complex plane except a finite singular point. For that we use the Nevanlinna theory with adapted definitions.
@article{BASM_2021_1_a2,
     author = {Houari Fettouch and Saada Hamouda},
     title = {Local growth of solutions of linear differential equations with analytic coefficients of finite iterated order},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {69--83},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a2/}
}
TY  - JOUR
AU  - Houari Fettouch
AU  - Saada Hamouda
TI  - Local growth of solutions of linear differential equations with analytic coefficients of finite iterated order
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2021
SP  - 69
EP  - 83
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a2/
LA  - en
ID  - BASM_2021_1_a2
ER  - 
%0 Journal Article
%A Houari Fettouch
%A Saada Hamouda
%T Local growth of solutions of linear differential equations with analytic coefficients of finite iterated order
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2021
%P 69-83
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a2/
%G en
%F BASM_2021_1_a2
Houari Fettouch; Saada Hamouda. Local growth of solutions of linear differential equations with analytic coefficients of finite iterated order. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 69-83. https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a2/

[1] Belaidi B., Hamouda S., “Orders of solutions of an n-th order linear differential equations with entire coefficients”, Electron. J. Differential Equations, 2001:63 (2001), 1–5 | MR

[2] Bieberbach L., Theorie der gewöhnlichen Differentialgleichungen, Springer-Verlag, Berlin–Heidelberg–New York, 1965 | MR

[3] Chen Z. X., Yang C. C., “Some further results on zeros and growths of entire solutions of second order linear differential equations”, Kodai Math. J., 22 (1999), 273–285 | MR | Zbl

[4] Fettouch H., Hamouda S., “Growth of local solutions to linear differential equations around an isolated essential singularity”, Electron. J. Differential Equations, 2016:226 (2016), 1–10 | MR

[5] Hamouda S., “Properties of solutions to linear differential equations with analytic coefficients in the unit disc”, Electron. J. Differential Equations, 2012:177 (2012), 1–9 | MR | Zbl

[6] Hamouda S., “Iterated order of solutions of linear differential equations in the unit disc”, Comput. Methods Funct. Theory, 13:4 (2013), 545–555 | DOI | MR | Zbl

[7] Hamouda S., “The possible orders of growth of solutions to certain linear differential equations near a singular point”, J. Math. Anal. Appl., 458 (2018), 992–1008 | DOI | MR | Zbl

[8] Hayman W. K., Meromorphic functions, Clarendon Press, Oxford, 1964 | MR | Zbl

[9] Khrystiyanyn A. Ya., Kondratyuk A. A., “On the Nevanlinna theory for meromorphic functions on annuli”, Matematychni Studii, 23:1 (2005), 19–30 | MR | Zbl

[10] Kondratyuk A. A., Laine I., “Meromorphic functions in multiply connected domains”, Fourier Series Methods in Complex Analysis, Univ. Joensuu Dept. Math. Rep. Ser., 10, Univ. Joensuu, Joensuu, 2006, 9–111 | MR | Zbl

[11] Korhonen R., “Nevanlinna theory in an annulus”, Value Distribution Theory and Related Topics, Adv. Complex Anal. Appl., 3, Kluwer Acad. Publ., Boston, MA, 2004, 167–179 | MR | Zbl

[12] Laine I., Nevanlinna theory and complex differential equations, W. de Gruyter, Berlin, 1993 | MR

[13] Mark E. L., Zhuan Y., “Logarithmic derivatives in annulus”, J. Math. Anal. Appl., 356 (2009), 441–452 | DOI | MR | Zbl

[14] Tsuji M., Potential theory in modern function theory, reprint of the 1959 edition, Chelsea, New York, 1975 | MR | Zbl

[15] Tu J., Chen Z. X., Zheng X. Z., “Growth of solutions of complex differential equations with coefficients of finite iterated order”, Electron. J. Differential Equations, 2006:54 (2006), 1–8 | MR

[16] Tu J., Yi C.-F., “On the growth of solutions of a class of higher order linear differential equations with coefficients having the same order”, J. Math. Anal. Appl., 340 (2008), 487–497 | DOI | MR | Zbl

[17] Wittaker J. M., “The order of the derivative of a meromorphic function”, J. London Math. Soc., 11 (1936), 82–87, Jbuch 62, 357 | DOI | MR

[18] Yang L., Value distribution theory, Springer-Verlag Science Press, Berlin-Beijing, 1993 | MR | Zbl