An iterative method for solving split minimization problem in Banach space with applications
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 3-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to study an approximation method for finding a solution of the split minimization problem which is also a fixed point of a right Bregman strongly nonexpansive mapping in p-uniformly convex real Banach spaces which are also uniformly smooth. We introduce a new iterative algorithm with a new choice of stepsize such that its implementation does not require a prior knowledge of the operator norm. Using the Bregman distance technique, we prove a strong convergence theorem for the sequence generated by our algorithm. Further, we applied our result to the approximation of solution of inverse problem arising in signal processing and give a numerical example to show how the sequence values are affected by the number of iterations. Our result in this paper extends and complements many recent results in literature.
@article{BASM_2021_1_a0,
     author = {L. O. Jolaoso and F. U. Ogbuisi and O. T. Mewomo},
     title = {An iterative method for solving split minimization problem in {Banach} space with applications},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--30},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a0/}
}
TY  - JOUR
AU  - L. O. Jolaoso
AU  - F. U. Ogbuisi
AU  - O. T. Mewomo
TI  - An iterative method for solving split minimization problem in Banach space with applications
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2021
SP  - 3
EP  - 30
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a0/
LA  - en
ID  - BASM_2021_1_a0
ER  - 
%0 Journal Article
%A L. O. Jolaoso
%A F. U. Ogbuisi
%A O. T. Mewomo
%T An iterative method for solving split minimization problem in Banach space with applications
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2021
%P 3-30
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a0/
%G en
%F BASM_2021_1_a0
L. O. Jolaoso; F. U. Ogbuisi; O. T. Mewomo. An iterative method for solving split minimization problem in Banach space with applications. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 3-30. https://geodesic-test.mathdoc.fr/item/BASM_2021_1_a0/

[1] Abbas M., Al Sharani M., Ansari Q. H., Iyiola G. S., Shehu Y., “Iterative methods for solving proximal split minimization problem”, Numer. Algorithms, 78:1 (2018), 193–215 | DOI | MR | Zbl

[2] Alakoya T. O., Jolaoso L. O., Mewomo O. T., “Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems”, Optimization, 70:2 (2021), 545–574 | DOI | MR | Zbl

[3] Alakoya T. O., Jolaoso L. O., Mewomo O. T., “Two modifications of the inertial Tseng extragradient method with self-adaptive step size for solving monotone variational inequality problems”, Demonstr. Math., 53 (2020), 208–224 | DOI | MR | Zbl

[4] Alakoya T. O., Jolaoso L. O., Mewomo O. T., “Strong convergence theorems for finite families of pseudomonotone equilibrium and fixed point problems in Banach spaces”, Afr. Mat., 2021 | DOI | MR

[5] Alakoya T. O., Jolaoso L. O., Taiwo A., Mewomo O. T., “Inertial algorithm with self-adaptive stepsize for split common null point and common fixed point problems for multivalued mappings in Banach spaces”, Optimization, 2021 | DOI | MR

[6] Alakoya T. O., Taiwo A., Mewomo O. T., Cho Y. J., “An iterative algorithm for solving variational inequality, generalized mixed equilibrium, convex minimization and zeros problems for a class of nonexpansive-type mappings”, Ann. Univ. Ferrara Sez. VII Sci. Mat., 67:1 (2021), 1–31 | DOI | MR | Zbl

[7] Bauschke H. H., Borwein J. M., Combettes P. L., “Bregman monotone optimization algorithm”, SIAM J. Control Optim., 42 (2003), 596–635 | DOI | MR

[8] Bot R. I., Csetnek E. R., “An inertial Tseng's type proximal algorithm for non-smooth and nonconvex optimization problem”, J. Optim. Theory Appl., 171 (2016), 600–616 | DOI | MR | Zbl

[9] Bot R. I., Csetnek E. R., Laszlo S. C., “An inertial forward-backward algorithm for the minimization of the sum of two non-convex functions”, EURO J. Comput. Optim., 4 (2016), 3–25 | DOI | MR

[10] Bryne C., “A unified treatment of some iterative algorithms in signal processing and image restoration”, Inverse Problems, 20:1 (2004), 103–120 | DOI | MR

[11] Bryne C., “Iterative oblique projection onto convex sets and split feasibility problem”, Inverse Problems, 18:2 (2002), 441–453 | DOI | MR

[12] Censor Y., Elfving T., “A multiprojection algorithm using Bregman projection in a product space”, Numer. Algorithms, 8:2–4 (1994), 221–239 | DOI | MR | Zbl

[13] Censor Y., Lent A., “An iterative row-action method for interval convex programming”, J. Optim. Theory Appl., 34 (1981), 321–353 | DOI | MR | Zbl

[14] Censor Y., Reich S., “Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization”, Optimization, 37 (1996), 323–339 | DOI | MR | Zbl

[15] Chidume C. E., Geometric properties of Banach spaces and Nonlinear iteration, Lecture Notes Math., 1965, Spinger-Verlag, 2009 | DOI | MR

[16] Daubechies I., Fornasier M., Loris I., “Accelerated projected gradient method for linear inverse problems wih sparsity constraints”, J. Fourier Anal. Appl., 14 (2008), 764–792 | DOI | MR | Zbl

[17] Figureido M. A., Norwak R. D., Wright S. J., “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problem”, IEEE J. Sel. Top. Signal Process., 1 (2007), 586–598 | DOI

[18] Hendrickx J. M., Olshevsky A., “Matrix P-Norms are NP-Hard to approximate if $p=1,2,\infty$”, SIAM J. Matrix Anal. Appl., 31 (2012), 2802–2812 | DOI | MR

[19] Jolaoso L. O., Alakoya T. O., Taiwo A., Mewomo O. T., “A parallel combination extragradient method with Armijo line searching for finding common solution of finite families of equilibrium and fixed point problems”, Rend. Circ. Mat. Palermo II, 69:2 (2020), 475–495 | DOI | MR

[20] Jolaoso L. O., Alakoya T. O., Taiwo A., Mewomo O. T., “Inertial extragradient method via viscosity approximation approach for solving Equilibrium problem in Hilbert space”, Optimization, 70:2 (2021), 545–574 | DOI | MR | Zbl

[21] Jolaoso L. O., Alakoya T. O., Taiwo A., Mewomo O. T., “A unified algorithm for solving variational inequality and fixed point problems with application to the split equality problem”, Comput. Appl. Math., 39:1 (2020), 38, 211–232 | DOI | MR

[22] Jolaoso L. O., Taiwo A., Alakoya T. O., Mewomo O. T., “Strong convergence theorem for solving pseudo-monotone variational inequality problem using projection method in a reflexive Banach space”, J. Optim. Theory Appl., 185:3 (2020), 744–766 | DOI | MR | Zbl

[23] Lopez G., Martín-Márquez V., Wang F., Xu H.-K., “Solving the split feasibility problem without prior knowledge of the matrix norms”, Inverse Problems, 2012, 085004, 18 pp. | DOI | MR | Zbl

[24] Mainge P. E., “Strong convergence of projected subgradient methods for nonsmooth and not strictly convex minimization”, Set-valued Anal., 16 (2008), 899–912 | DOI | MR | Zbl

[25] Martín-Márquez V., Reich S., Sabach S., “Bregman strongly nonexpansive operator in reflexive Banach spaces”, J. Math. Anal. Appl., 400 (2013), 597–614 | DOI | MR | Zbl

[26] Martín-Márquez V., Reich S., Sabach S., “Right Bregman nonexpansive operators in Banach spaces”, Nonlinear Anal., 78 (2012), 5448–5465 | MR

[27] Mewomo O. T., Ogbuisi F. U., “Convergence analysis of an iterative method for solving multiple-set split feasibility problem in certain Banach spaces”, Quaest. Math., 41:1 (2018), 129–148 | DOI | MR | Zbl

[28] Moudafi A., Thakur B. S., “Solving proximal split feasibility problems without prior knowledge of operator norms”, Optim. Lett., 8 (2014), 2099–2110 | DOI | MR | Zbl

[29] Olona M. A., Alakoya T. O., Owolabi A. O.-E., Mewomo O. T., “Inertial shrinking projection algorithm with self-adaptive step size for split generalized equilibrium and fixed point problems for a countable family of nonexpansive multivalued mappings”, Demonstr. Math., 54 (2021), 47–67 | DOI | MR | Zbl

[30] Olona M. A., Alakoya T. O., Owolabi A. O.-E., Mewomo O. T., “Inertial algorithm for solving equilibrium, variational inclusion and fixed point problems for an infinite family of strictly pseudocontractive mappings”, J. Nonlinear Funct. Anal, 2021 (2021), 10, p., 21 pp. | MR

[31] Owolabi A. O.-E., Alakoya T. O., Taiwo A., Mewomo O. T., “A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings”, Numer. Algebra Control Optim., 2021 | DOI | MR

[32] Reich S., Sabach S., “Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces”, Nonlinear Anal., 73:10 (2010), 122–135 | DOI | MR | Zbl

[33] Schöpfers F., Iterative regularization method for the solution of the split feasibility problem in Banach spaces, PhD Thesis, Saarbrücken, 2007

[34] Schöpfers F., Schuster T., Louis A. K., “An iterative regularization method for the solution of the split feasibility problem in Banach spaces”, Inverse Problems, 24:5 (2008), 055008, 20 pp. | DOI | MR

[35] Shehu Y., Iyiola O. S., Enyi C. D., “An iterative algorithm for solving split feasibility problems and fixed point problems in Banach spaces”, Numer. Algorithm, 72 (2016), 835–864 | DOI | MR | Zbl

[36] Shehu Y., Iyiola O. S., “Convergence analysis for the proximal split feasibility problem using an inertial extrapolation term method”, J. Fixed Point Theory Appl., 19:4 (2017), 2483–2510 | DOI | MR | Zbl

[37] Shehu Y., Ogbuisi F. U., “Convergence analysis for proximal split feasibility problems and fixed point problems”, J. Appl. Math. Comput., 48 (2015), 221–239 | DOI | MR | Zbl

[38] Shehu Y., Ogbuisi F. U., Mewomo O. T., “Further investigation into approximation of a common solution of fixed point problems and split feasibility problems”, Acta. Math. Sci. Ser. B (Engl. Ed.), 36:3 (2016), 913–930 | MR | Zbl

[39] Taiwo A., Alakoya T. O., Mewomo O. T., “Strong convergence theorem for solving equilibrium problem and fixed point of relatively nonexpansive multi-valued mappings in a Banach space with applications”, Asian-Eur. J. Math., 2020 | DOI | MR

[40] Taiwo A., Alakoya T. O., Mewomo O. T., “Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces”, Numer. Algorithms, 86:4 (2021), 1359–1389 | DOI | MR | Zbl

[41] Taiwo A., Jolaoso L. O., Mewomo O. T., “Inertial-type algorithm for solving split common fixed-point problem in Banach spaces”, J. Sci. Comput., 86:1, 12, 30 pp. | DOI | MR | Zbl

[42] Takahashi W., “Proximal point algorithms and four resolvents of nonlinear operators of monotone type in Banach spaces”, Taiwan J. Math., 12 (2008), 1883–1910 | DOI | MR | Zbl

[43] Takahashi S., Takahashi W., “The split common null point problem and shrinking projection method in Banach spaces”, Optimization, 65 (2016), 281–287 | DOI | MR | Zbl

[44] Wang P., Zhou J., Wang R., Chen J., “New generalized variable stepsizes of the CQ-algorithm for solving the split feasibility problem”, J. Inequal. Appl., 2017, 135, 18 pp. | DOI | MR

[45] Xu H.-K., “A variable Krasnoselskii-Mann algorithm and the multiple-set split feasibility problem”, Inverse Problem, 22:6 (2006), 2021–2034 | DOI | MR | Zbl

[46] Xu H.-K., “Inequalities in Banach spaces with applications”, Nonlinear Anal., 16:2 (1991), 1127–1138 | MR | Zbl

[47] Xu H.-K., “Iterative algorithms for nonlinear operators”, J. Lond. Math. Soc., 66 (2000), 240–256 | MR

[48] Xu H.-K., “Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces”, Inverse Problems, 26:10 (2010), 125018, 17 pp. | MR

[49] Yang Q., “The relaxed CQ-algorithm solving the split feasibility problem”, Inverse problems, 20:4 (2004), 1261–1266 | DOI | MR | Zbl

[50] Yao Y., Yao Z., Abdou A., Cho Y., “Self-adaptive algorithms for proximal split feasibility problems and strong convergence analysis”, Fixed Point Theory Appl., 2015 (2015), 205, 13 pp. | DOI | MR

[51] Yao Y., Yigang W., Lion Y.-C., “Regularized methods for the split feasibility problem”, Abstr. Anal., 2012 (2012), 140679, 13 pp. | MR | Zbl