Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2020_3_a0, author = {Sergey Dukhnovsky}, title = {On solutions of the kinetic {McKean} system}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {3--11}, publisher = {mathdoc}, number = {3}, year = {2020}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2020_3_a0/} }
Sergey Dukhnovsky. On solutions of the kinetic McKean system. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2020), pp. 3-11. https://geodesic-test.mathdoc.fr/item/BASM_2020_3_a0/
[1] Godunov S. K., Sultangazin U. M., “On discrete models of the kinetic Boltzmann equation”, Russian Math. Surveys, 26 (1971), 1–56 | DOI | MR
[2] Broadwell J. E., “Study of rarefied shear flow by the discrete velocity method”, J. Fluid Mech., 19 (1964), 401–414 | DOI | MR | Zbl
[3] Weiss J., Tabor M., Carnevale G., “The Painlevé property for partial diferential equation”, J. Math. Phys., 24 (1983), 522–526 | DOI | MR | Zbl
[4] Lindblom O., Euler N., “Solutions of discrete-velocity Boltzmann equations via Bateman and Riccati equations”, Theor. Math. Phys., 131 (2002), 595–608 | DOI | MR | Zbl
[5] Lindblom O., Euler N., “n-Dimensional Bateman equation and the Painlevé analysis of wave equations”, Int. J. of Diff. Eqs. and Appl., 1 (2000), 205–222 | MR | Zbl
[6] Steeb W.-H., Euler N., “Painlevé test and discrete Boltzmann equations”, Aust. J. Phys., 42 (1989), 1–10 | MR
[7] Fairlie D. B., “Integrable systems in higher dimensions”, Prog. of Theor. Phys. Supp., 118 (1995), 309–327 | DOI | MR | Zbl
[8] Cornille H., “Construction of positive exact (2+1)-dimensional shock wave solutions for two discrete Boltzmann models”, J. Stat. Phys., 52 (1988), 897–949 | DOI | MR | Zbl
[9] Cabannes H., Dang Hong Tiem, “Exact Solutions for Some Discrete Models of the Boltzmann Equation”, Complex Systems, 1 (1987), 575–584 | MR | Zbl
[10] Cabannes H., “Exact solutions for the discrete Boltzmann models with specular reflection”, Lett. Math. Phys., 16 (1988), 245–250 | DOI | MR
[11] Il'yin O. V., “Existence and stability analysis for the Carleman kinetic system”, Comput. Math. and Math. Phys., 47 (2007), 1990–2001 | DOI | MR
[12] Il'yin O. V., “Stationary solutions of the kinetic Broadwell model”, Theoret. and Math. Phys., 170 (2012), 406–412 | DOI | MR | Zbl
[13] Radkevich E. V., “On discrete kinetic equations”, Dokl. Math., 86 (2012), 809–813 | DOI | MR | Zbl
[14] Radkevich E. V., “On the large-time behavior of solutions to the Cauchy problem for a 2-dimensional discrete kinetic equation”, J. Math. Sci., 202 (2014), 735–768 | DOI | MR | Zbl
[15] Radkevich E. V., Vasil'eva O. A., Dukhnovskii S. A., “Local equilibrium of the Carleman equation”, J. Math. Sci., 207 (2015), 296–323 | DOI | MR | Zbl
[16] Vasil'eva O. A., Dukhnovskii S. A., Radkevich E. V., “On the nature of local equilibrium in the Carleman and Godunov-Sultangazin equations”, J. Math. Sci., 235 (2018), 393–454 | MR
[17] Dukhnovskii S. A., “Asymptotic stability of equilibrium states for Carleman and Godunov-Sultangazin systems of equations”, Mosc. Univ. Math. Bull., 74 (2019), 246–248 | DOI | MR | Zbl
[18] Dukhnovky S., “Exponential stability of the stationary solutions of the kinetic Carleman system”, Journal of Physics Conference Series, 1425 (2020), 012142 | DOI | MR
[19] Vasil'eva O., “Numerical investigation of the Godunod-Sultangazin system”, Procedia engineering, 153 (2016), 824–827 | DOI
[20] Vasil'eva O., “Numerical investigation of some stationary solutions of the Carleman system”, IPICSE–2016, MATEC Web of Conferences, 86, 04041 | DOI