On solutions of the kinetic McKean system
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2020), pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we apply the Painlevé expansion for the kinetic McKean system. This system does not pass the Painlevé test. It leads to the singularity manifold constraint. The singularity manifold conditions are satisfied by the n-dimensional Bateman equation. This allows to get some new solutions.
@article{BASM_2020_3_a0,
     author = {Sergey Dukhnovsky},
     title = {On solutions of the kinetic {McKean} system},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--11},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2020_3_a0/}
}
TY  - JOUR
AU  - Sergey Dukhnovsky
TI  - On solutions of the kinetic McKean system
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2020
SP  - 3
EP  - 11
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2020_3_a0/
LA  - en
ID  - BASM_2020_3_a0
ER  - 
%0 Journal Article
%A Sergey Dukhnovsky
%T On solutions of the kinetic McKean system
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2020
%P 3-11
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2020_3_a0/
%G en
%F BASM_2020_3_a0
Sergey Dukhnovsky. On solutions of the kinetic McKean system. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2020), pp. 3-11. https://geodesic-test.mathdoc.fr/item/BASM_2020_3_a0/

[1] Godunov S. K., Sultangazin U. M., “On discrete models of the kinetic Boltzmann equation”, Russian Math. Surveys, 26 (1971), 1–56 | DOI | MR

[2] Broadwell J. E., “Study of rarefied shear flow by the discrete velocity method”, J. Fluid Mech., 19 (1964), 401–414 | DOI | MR | Zbl

[3] Weiss J., Tabor M., Carnevale G., “The Painlevé property for partial diferential equation”, J. Math. Phys., 24 (1983), 522–526 | DOI | MR | Zbl

[4] Lindblom O., Euler N., “Solutions of discrete-velocity Boltzmann equations via Bateman and Riccati equations”, Theor. Math. Phys., 131 (2002), 595–608 | DOI | MR | Zbl

[5] Lindblom O., Euler N., “n-Dimensional Bateman equation and the Painlevé analysis of wave equations”, Int. J. of Diff. Eqs. and Appl., 1 (2000), 205–222 | MR | Zbl

[6] Steeb W.-H., Euler N., “Painlevé test and discrete Boltzmann equations”, Aust. J. Phys., 42 (1989), 1–10 | MR

[7] Fairlie D. B., “Integrable systems in higher dimensions”, Prog. of Theor. Phys. Supp., 118 (1995), 309–327 | DOI | MR | Zbl

[8] Cornille H., “Construction of positive exact (2+1)-dimensional shock wave solutions for two discrete Boltzmann models”, J. Stat. Phys., 52 (1988), 897–949 | DOI | MR | Zbl

[9] Cabannes H., Dang Hong Tiem, “Exact Solutions for Some Discrete Models of the Boltzmann Equation”, Complex Systems, 1 (1987), 575–584 | MR | Zbl

[10] Cabannes H., “Exact solutions for the discrete Boltzmann models with specular reflection”, Lett. Math. Phys., 16 (1988), 245–250 | DOI | MR

[11] Il'yin O. V., “Existence and stability analysis for the Carleman kinetic system”, Comput. Math. and Math. Phys., 47 (2007), 1990–2001 | DOI | MR

[12] Il'yin O. V., “Stationary solutions of the kinetic Broadwell model”, Theoret. and Math. Phys., 170 (2012), 406–412 | DOI | MR | Zbl

[13] Radkevich E. V., “On discrete kinetic equations”, Dokl. Math., 86 (2012), 809–813 | DOI | MR | Zbl

[14] Radkevich E. V., “On the large-time behavior of solutions to the Cauchy problem for a 2-dimensional discrete kinetic equation”, J. Math. Sci., 202 (2014), 735–768 | DOI | MR | Zbl

[15] Radkevich E. V., Vasil'eva O. A., Dukhnovskii S. A., “Local equilibrium of the Carleman equation”, J. Math. Sci., 207 (2015), 296–323 | DOI | MR | Zbl

[16] Vasil'eva O. A., Dukhnovskii S. A., Radkevich E. V., “On the nature of local equilibrium in the Carleman and Godunov-Sultangazin equations”, J. Math. Sci., 235 (2018), 393–454 | MR

[17] Dukhnovskii S. A., “Asymptotic stability of equilibrium states for Carleman and Godunov-Sultangazin systems of equations”, Mosc. Univ. Math. Bull., 74 (2019), 246–248 | DOI | MR | Zbl

[18] Dukhnovky S., “Exponential stability of the stationary solutions of the kinetic Carleman system”, Journal of Physics Conference Series, 1425 (2020), 012142 | DOI | MR

[19] Vasil'eva O., “Numerical investigation of the Godunod-Sultangazin system”, Procedia engineering, 153 (2016), 824–827 | DOI

[20] Vasil'eva O., “Numerical investigation of some stationary solutions of the Carleman system”, IPICSE–2016, MATEC Web of Conferences, 86, 04041 | DOI