Asymmetric separation of convex sets
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2020), pp. 88-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on various types of asymmetric hyperplane separation of a given pair of convex sets K1 and K2 in the n-dimensional Euclidean space, we derive a uniform description of existing types of separation. Our argument uses properties of the polar cone (K1K2). Also, we consider asymmetric separation of convex cones with a common apex.
@article{BASM_2020_2_a8,
     author = {Valeriu Soltan},
     title = {Asymmetric separation of convex sets},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {88--101},
     publisher = {mathdoc},
     number = {2},
     year = {2020},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2020_2_a8/}
}
TY  - JOUR
AU  - Valeriu Soltan
TI  - Asymmetric separation of convex sets
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2020
SP  - 88
EP  - 101
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2020_2_a8/
LA  - en
ID  - BASM_2020_2_a8
ER  - 
%0 Journal Article
%A Valeriu Soltan
%T Asymmetric separation of convex sets
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2020
%P 88-101
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2020_2_a8/
%G en
%F BASM_2020_2_a8
Valeriu Soltan. Asymmetric separation of convex sets. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2020), pp. 88-101. https://geodesic-test.mathdoc.fr/item/BASM_2020_2_a8/

[1] J. Bair, F. Jongmans, “La séparation vraie dans un espace vectoriel”, Bull. Soc. Roy. Sci. Liège, 41 (1972), 163–170 | MR | Zbl

[2] A. Brøndsted, “The inner aperture of a convex set”, Pacific J. Math., 72 (1977), 335–340 | DOI | MR

[3] V. L. Klee, “Strict separation of convex sets”, Proc. Amer. Math. Soc., 7 (1956), 735–737 | DOI | MR | Zbl

[4] V. L. Klee, “Maximal separation theorems for convex sets”, Trans. Amer. Math. Soc., 134 (1968), 133–147 | DOI | MR | Zbl

[5] V. L. Klee}, “Separation and support properties of convex sets – a survey”, Control Theory and the Calculus of Variations (University of California, LA, 1968), Academic Press, New York, 1969, 235–303 | MR

[6] J. Lawrence, V. Soltan, “On unions and intersections of nested families of cones”, Beitr. Algebra Geom., 57 (2016), 655–665 | DOI | MR | Zbl

[7] H. Minkowski, Geometrie der Zahlen, v. I, Teubner, Leipzig, 1896 ; v. II, Teubner, Leipzig, 1910 | MR | Zbl

[8] H. Minkowski, Gesammelte Abhandlungen, v. 2, Teubner, Leipzig, 1911 | Zbl

[9] R. T. Rockafellar, Convex Analysis, Princeton Universty Press, Princeton, NJ, 1970 | MR | Zbl

[10] V. Soltan, “Polarity and separation of cones”, Linear Algebra Appl., 538 (2018), 212–224 | DOI | MR | Zbl

[11] V. Soltan, Lectures on convex sets, Second edition, World Scientific, Hackensack, NJ, 2020 | MR | Zbl

[12] V. Soltan, “Separating hyperplanes of convex sets”, J. Convex Anal., 28 (2021) (to appear)