Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2020_2_a8, author = {Valeriu Soltan}, title = {Asymmetric separation of convex sets}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {88--101}, publisher = {mathdoc}, number = {2}, year = {2020}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2020_2_a8/} }
Valeriu Soltan. Asymmetric separation of convex sets. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2020), pp. 88-101. https://geodesic-test.mathdoc.fr/item/BASM_2020_2_a8/
[1] J. Bair, F. Jongmans, “La séparation vraie dans un espace vectoriel”, Bull. Soc. Roy. Sci. Liège, 41 (1972), 163–170 | MR | Zbl
[2] A. Brøndsted, “The inner aperture of a convex set”, Pacific J. Math., 72 (1977), 335–340 | DOI | MR
[3] V. L. Klee, “Strict separation of convex sets”, Proc. Amer. Math. Soc., 7 (1956), 735–737 | DOI | MR | Zbl
[4] V. L. Klee, “Maximal separation theorems for convex sets”, Trans. Amer. Math. Soc., 134 (1968), 133–147 | DOI | MR | Zbl
[5] V. L. Klee}, “Separation and support properties of convex sets – a survey”, Control Theory and the Calculus of Variations (University of California, LA, 1968), Academic Press, New York, 1969, 235–303 | MR
[6] J. Lawrence, V. Soltan, “On unions and intersections of nested families of cones”, Beitr. Algebra Geom., 57 (2016), 655–665 | DOI | MR | Zbl
[7] H. Minkowski, Geometrie der Zahlen, v. I, Teubner, Leipzig, 1896 ; v. II, Teubner, Leipzig, 1910 | MR | Zbl
[8] H. Minkowski, Gesammelte Abhandlungen, v. 2, Teubner, Leipzig, 1911 | Zbl
[9] R. T. Rockafellar, Convex Analysis, Princeton Universty Press, Princeton, NJ, 1970 | MR | Zbl
[10] V. Soltan, “Polarity and separation of cones”, Linear Algebra Appl., 538 (2018), 212–224 | DOI | MR | Zbl
[11] V. Soltan, Lectures on convex sets, Second edition, World Scientific, Hackensack, NJ, 2020 | MR | Zbl
[12] V. Soltan, “Separating hyperplanes of convex sets”, J. Convex Anal., 28 (2021) (to appear)