Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2020_2_a0, author = {D. N. Moldovyan}, title = {New form of the hidden logarithm problem and its algebraic support}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {3--10}, publisher = {mathdoc}, number = {2}, year = {2020}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2020_2_a0/} }
TY - JOUR AU - D. N. Moldovyan TI - New form of the hidden logarithm problem and its algebraic support JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2020 SP - 3 EP - 10 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2020_2_a0/ LA - en ID - BASM_2020_2_a0 ER -
D. N. Moldovyan. New form of the hidden logarithm problem and its algebraic support. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2020), pp. 3-10. https://geodesic-test.mathdoc.fr/item/BASM_2020_2_a0/
[1] First NIST standardization conference (April 11–13, 2018) http://prometheuscrypt.gforge.inria.fr/2018-04-18.pqc2018.html
[2] “Post-Quantum Cryptography”, 9th International Conference, PQCrypto 2018 Proceedings (Fort Lauderdale, FL, USA, April 9–11, 2018), Lecture Notes in Computer Science, 10786, Springer Verlag, 2018
[3] Yan S. Y., Quantum Computational Number Theory, Springer, 2015, 252 pp. | MR | Zbl
[4] Yan S. Y., Quantum Attacks on Public-Key Cryptosystems, Springer, 2014, 207 pp.
[5] Moldovyan D. N., “Non-Commutative Finite Groups as Primitive of Public-Key Cryptoschemes”, Quasigroups and Related Systems, 18:2 (2010), 165–176 | MR | Zbl
[6] Kuzmin A. S., Markov V. T., Mikhalev A. A., Mikhalev A. V., Nechaev A. A., “Cryptographic Algorithms on Groups and Algebras”, Journal of Mathematical Sciences, 223:5 (2017), 629–641 | DOI | MR | Zbl
[7] Moldovyan A. A., Moldovyan N. A., “Post-quantum signature algorithms based on the hidden discrete logarithm problem”, Computer Science Journal of Moldova, 26:3(78) (2018), 301–313 | MR | Zbl
[8] Moldovyan N. A., Moldovyan A. A., “Finite Non-commutative Associative Algebras as carriers of Hidden Discrete Logarithm Problem”, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming Computer Software (Bulletin SUSU MMCS), 12:1 (2019), 66–81 | Zbl
[9] Moldovyan N. A., “Unified Method for Defining Finite Associative Algebras of Arbitrary Even Dimensions”, Quasigroups and Related Systems, 26:2 (2018), 263–270 | MR | Zbl
[10] Moldovyan N. A., “Finite Non-commutative Associative Algebras for Setting the Hidden Discrete Logarithm Problem and Post-quantum Cryptoschemes on its Base”, Buletinul Academiei de Stiinte a Republicii Moldova, Matematica, 2019, no. 1(89), 71–78 | MR | Zbl