Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2020_1_a4, author = {Alexandru Lazari and Dmitrii Lozovanu}, title = {New algorithms for finding the limiting and differential matrices in {Markov} chains}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {75--88}, publisher = {mathdoc}, number = {1}, year = {2020}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2020_1_a4/} }
TY - JOUR AU - Alexandru Lazari AU - Dmitrii Lozovanu TI - New algorithms for finding the limiting and differential matrices in Markov chains JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2020 SP - 75 EP - 88 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2020_1_a4/ LA - en ID - BASM_2020_1_a4 ER -
%0 Journal Article %A Alexandru Lazari %A Dmitrii Lozovanu %T New algorithms for finding the limiting and differential matrices in Markov chains %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2020 %P 75-88 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2020_1_a4/ %G en %F BASM_2020_1_a4
Alexandru Lazari; Dmitrii Lozovanu. New algorithms for finding the limiting and differential matrices in Markov chains. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2020), pp. 75-88. https://geodesic-test.mathdoc.fr/item/BASM_2020_1_a4/
[1] Lozovanu D., Pickl S., Optimization of Stochastic Discrete Systems and Control on Complex Networks, Springer, 2015 | MR | Zbl
[2] Le Gall F., “Powers of tensors and fast matrix multiplication”, Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, 2014, 296–303 | DOI | MR | Zbl
[3] Williams V., Multiplying matrices in $O(n^{2.373})$ time, Stanford University, 2014
[4] Alonso P., Boratto M., Peinado J., Ibáñez J., Sastre J., On the evaluation of matrix polynomials using several GPGPUs, 2014
[5] Ballard G., Demmel J., Holtz O., Lipshitz B., Schwartz O., Communication-Optimal Parallel Algorithm for Strassen's Matrix Multiplication, Cornell University Library, 2012
[6] Lazari A., “Algorithms for determining the transient and differential matrices in finite Markov processes”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2010, no. 2(63), 84–99 | MR | Zbl
[7] Lazari A., Lozovanu D., “An approach for determining the matrix of limiting state probabilities in discrete Markov processes”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2010, no. 1(62), 77–91 | MR | Zbl
[8] Cormen T. H., Leiserson C. E., Rivest R. L., Stein C., Introduction to Algorithms, 3rd ed., MIT Press, Cambridge, MA, 2009 | MR | Zbl
[9] D'Alberto P., Nicolau A., Adaptive Winograd's Matrix Multiplications, ACM Transactions on Mathematical Software, V, 2008 | MR
[10] Pernet C., Storjohann A., Faster algorithms for the characteristic polynomial, N2L 3G1, David R. Cheriton School of Computer Science University of Waterloo, Ontario, Canada, 2007 | MR
[11] Bernstein D., Matrix Mathematics, Princeton University Press, 2005 | MR | Zbl
[12] WanZhen L., Roi B., Chandra S., Yihan S., Alexis T., Martin H., “Fast methods for resumming matrix polynomials and Chebyshev matrix polynomials”, Journal of Computational Physics, 194 (2004), 575–587 | DOI | MR | Zbl
[13] Puterman M., Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley, 2005 | MR | Zbl
[14] Coppersmith D., Winograd S., “Matrix multiplication via arithmetic progressions”, J. Symbolic Computation, 9:3 (1990), 251–280 | DOI | MR | Zbl
[15] Keller-Gehrig W., “Fast algorithms for the characteristic polynomial”, Theoretical Computer Science, 36 (1985), 309–317 | DOI | MR | Zbl
[16] Strassen V., “Gaussian elimination is not optimal”, Numer. Math., 13 (1969), 354–356 | DOI | MR | Zbl
[17] Howard R. A., Dynamic Programming and Markov Processes, Wiley, 1960 | MR | Zbl