Commutator subgroup of Sylow 2-subgroups of alternating group and the commutator width in the wreath product
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2020), pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the commutator length of an arbitrary element of the iterated wreath product of cyclic groups Cpi, piN, is equal to 1. The commutator width of direct limit of wreath product of cyclic groups is found. This paper gives upper bounds of the commutator width (cw(G)) [1] of a wreath product of groups. A presentation in the form of wreath recursion [6] of Sylow 2-subgroups Syl2A2k of A2k is introduced. As a corollary, we obtain a short proof of the result that the commutator width is equal to 1 for Sylow 2-subgroups of the alternating group A2k, where k>2, permutation group S2k and for Sylow p-subgroups Syl2Apk and Syl2Spk. The commutator width of permutational wreath product BCn is investigated. An upper bound of the commutator width of permutational wreath product BCn for an arbitrary group B is found.
@article{BASM_2020_1_a0,
     author = {Ruslan V. Skuratovskii},
     title = {Commutator subgroup of {Sylow} 2-subgroups of alternating group and the commutator width in the wreath product},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--16},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2020_1_a0/}
}
TY  - JOUR
AU  - Ruslan V. Skuratovskii
TI  - Commutator subgroup of Sylow 2-subgroups of alternating group and the commutator width in the wreath product
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2020
SP  - 3
EP  - 16
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2020_1_a0/
LA  - en
ID  - BASM_2020_1_a0
ER  - 
%0 Journal Article
%A Ruslan V. Skuratovskii
%T Commutator subgroup of Sylow 2-subgroups of alternating group and the commutator width in the wreath product
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2020
%P 3-16
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2020_1_a0/
%G en
%F BASM_2020_1_a0
Ruslan V. Skuratovskii. Commutator subgroup of Sylow 2-subgroups of alternating group and the commutator width in the wreath product. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2020), pp. 3-16. https://geodesic-test.mathdoc.fr/item/BASM_2020_1_a0/

[1] Muranov A., “Finitely generated infinite simple groups of infinite commutator width”, International Journal of Algebra and Computation, 17 (2007), 607–659 | DOI | MR | Zbl

[2] Meldrum J. D. P., Wreath Products of Groups and Semigroups, Pitman Monographs and Surveys in Pure and Applied Mathematic, 1st Edition, 1995, 425 pp. | MR | Zbl

[3] Nikolov Nikolay., “On the commutator width of perfect groups”, Bull. London Math. Soc., 36 (2004), 30–36 | DOI | MR | Zbl

[4] Fite W. B., “On metabelian groups”, Trans. Amer. Math. Soc., 3 (1902), 331–353 | DOI | MR | Zbl

[5] Roger C. Lyndon, Paul E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | MR | Zbl

[6] Nekrashevych V., Self-similar groups, Mathematical Syrveys and Monographs, 117, International University Bremen. American Mathematical Society, 2005 | DOI | MR

[7] Bondarenko I. V., Samoilovych I. O., “On finite generation of self-similar groups of finite type”, Int. J. Algebra Comput., 23:01 (2013), 69–77 | DOI | MR

[8] Grigorchuk R. I., “Solved and unsolved problems around one group”, Infinite Groups: Geometric, Combinatorial and Dynamical Aspects (Bassel, 2005), Progress Math., 248, 117–218 | DOI | MR | Zbl

[9] Lavrenyuk Y., “On the finite state automorphism group of a rooted tree”, Algebra and Discrete Mathematics, 1 (2002), 79–87 | MR | Zbl

[10] Kaloujnine L., “La structure des p-groupes de Sylow des groupes symetriques finis”, Annales Scientifiques de l'Ecole Normale Superieure, 65 (1948), 239–276 | DOI | MR | Zbl

[11] Pawlik B., “The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs”, Algebra and Discrete Mathematics, 21 (2016), 264–281 | MR | Zbl

[12] Skuratovskii R., “Corepresentation of a Sylow p-subgroup of a group $S_n$”, Cybernetics and systems analysis, 2009, no. 1, 27–41 | MR | Zbl

[13] Skuratovskii R., “Generators and relations for Sylow $p$-subgroups of group $S_n$”, Naukovi Visti KPI, 4 (2013), 94–105 (in Ukrainian)

[14] Skuratovskii R. V., Drozd Y. A., “Generators and relations for wreath products of groups”, Ukr. Math. J., 60 (2008), 1168–1171 | DOI | MR

[15] Skuratovskii R. V., “Minimal generating systems and properties of $Syl_2A_{2^k}$ and $Syl_2A_{n}$”, X International Algebraic Conference in Odessa dedicated to the 70th anniversary of Yu. A. Drozd, 2015, 104

[16] Skuratovskii R. V., “Involutive irreducible generating sets and structure of sylow 2-subgroups of alternating groups”, ROMAI J., 13:1 (2017), 117–139 | MR | Zbl

[17] Skuratovskii R. V., Structure and minimal generating sets of Sylow 2-subgroups of alternating groups, arXiv: 1702.05784v2

[18] Skuratovskii R., “Commutators subgroups of sylow subgroups of alternating and symmetric groups their minimal generating sets”, The XII International Algebraic Conference in Ukraine (Vinnytsia, 2019), v. 1, 75 | MR

[19] Dmitruk U., Suschansky V., “Structure of 2-sylow subgroup of alternating group and normalizers of symmetric and alternating group”, UMJ, 1981, 304–312 | MR | Zbl

[20] Guralnick Robert, “Commutators and wreath products”, Contemporary Mathematics, 524, 2010, 97–107 | DOI | MR

[21] Heineken H., “Normal embeddings of p-groups into p-groups”, Proc. Edinburgh Math. Soc., 35 (1992), 309–314 | DOI | MR | Zbl

[22] Ward David, Topics in Finite Groups: Homology Groups, Pi-product Graphs, Wreath Products and Cuspidal Characters, Manchester Institute for Mathematical Sciences School of Mathematics, 2015