Polynomial differential systems with explicit expression
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2019), pp. 65-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we give an explicit expression of invariant algebraic curves of multi-parameter planar polynomial differential systems of degree nine, then we prove that these systems are integrable and we introduce an explicit expression of a first integral. Moreover, we determine sufficient conditions for these systems to possess two limit cycles: one of them is algebraic and the other one is shown to be non-algebraic, explicitly given. Concrete examples exhibiting the applicability of our result are introduced.
@article{BASM_2019_3_a6,
     author = {Mouna Yahiaoui and Rachid Boukoucha},
     title = {Polynomial differential systems with explicit expression},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {65--74},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2019_3_a6/}
}
TY  - JOUR
AU  - Mouna Yahiaoui
AU  - Rachid Boukoucha
TI  - Polynomial differential systems with explicit expression
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 65
EP  - 74
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2019_3_a6/
LA  - en
ID  - BASM_2019_3_a6
ER  - 
%0 Journal Article
%A Mouna Yahiaoui
%A Rachid Boukoucha
%T Polynomial differential systems with explicit expression
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 65-74
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2019_3_a6/
%G en
%F BASM_2019_3_a6
Mouna Yahiaoui; Rachid Boukoucha. Polynomial differential systems with explicit expression. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2019), pp. 65-74. https://geodesic-test.mathdoc.fr/item/BASM_2019_3_a6/

[1] Bendjeddou A., Cheurfa R., “On the exact limit cycle for some class of planar differential systems”, Nonlinear differ. equ. appl., 14 (2007), 491–498 | DOI | MR | Zbl

[2] Bendjeddou A., Cheurfa R., “Coexistence of algebraic and non-algebraic limit cycles for quintic polynomial differential systems”, Elect. J. of Diff. Equ., 71 (2017), 1–7 | MR

[3] Benterki R., Llibre J., “Polynomial differential systems with explicit non-algebraic limit cycles”, Elect. J. of Diff. Equ., 78 (2012), 1–6 | MR

[4] Boukoucha R., “Explicit limit cycles of a family of polynomial differential systems”, Elect. J. of Diff. Equ, 2017, 1–7 | MR

[5] Boukoucha R., Bendjeddou A., “On the dynamics of a class of rational Kolmogorov systems”, Journal of Nonlinear Mathematical Physics, 23:1 (2016), 21–27 | DOI | MR | Zbl

[6] Dumortier F., Llibre J., Artés J., Qualitative Theory of Planar Differential Systems, Universitex, Springer, Berlin, 2006 | MR | Zbl

[7] Gasull A., Giacomini H., Torregrosa J., “Explicit non-algebraic limit cycles for polynomial systems”, J. Comput. Appl. Math., 200 (2007), 448–457 | DOI | MR | Zbl

[8] Giné J., Grau M., “Coexistence of algebraic and non-algebraic limit cycles, explicitly given, using Riccati equations”, Nonlinearity, 19 (2006), 1939–1950 | DOI | MR | Zbl

[9] Hilbert D., “Mathematische Probleme”, Lecture, Second Internat. Congr. Math. (Paris, 1900), Nachr. Ges. Wiss. Gttingen Math. Phys. Kl, 1900, 253–297 ; English transl. Bull. Amer. Math. Soc., 8 (1902), 437–479 | Zbl | DOI | MR | Zbl

[10] Llibre J., Zhao Y., “Algebraic Limit Cycles in Polynomial Systems of Differential Equations”, J. Phys. A: Math. Theor., 40 (2007), 14207–14222 | DOI | MR | Zbl

[11] Odani K., “The limit cycle of the van der Pol equation is not algebraic”, J. of Diff. Equ, 115 (1995), 146–152 | DOI | MR | Zbl

[12] Perko L., Differential Equations and Dynamical Systems, Texts in Applied Mathematics, 7, Third edition, Springer-Verlag, New York, 2001 | DOI | MR | Zbl