Statistical Λ-convergence in intuitionistic fuzzy normed spaces
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2019), pp. 22-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

The basic objective of this work is to define statistical Λ-convergence in intuitionistic fuzzy normed spaces. We have given some examples which show this method of convergence is more generalized. Further, we have defined the statistical Λ-Cauchy sequences in these spaces and given the Cauchy convergence criterion for this new notion of convergence.
@article{BASM_2019_3_a2,
     author = {Reena Antal and Meenakshi Chawla and Vijay Kumar},
     title = {Statistical $\Lambda$-convergence in intuitionistic fuzzy normed spaces},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {22--33},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2019_3_a2/}
}
TY  - JOUR
AU  - Reena Antal
AU  - Meenakshi Chawla
AU  - Vijay Kumar
TI  - Statistical $\Lambda$-convergence in intuitionistic fuzzy normed spaces
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 22
EP  - 33
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2019_3_a2/
LA  - en
ID  - BASM_2019_3_a2
ER  - 
%0 Journal Article
%A Reena Antal
%A Meenakshi Chawla
%A Vijay Kumar
%T Statistical $\Lambda$-convergence in intuitionistic fuzzy normed spaces
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 22-33
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2019_3_a2/
%G en
%F BASM_2019_3_a2
Reena Antal; Meenakshi Chawla; Vijay Kumar. Statistical $\Lambda$-convergence in intuitionistic fuzzy normed spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2019), pp. 22-33. https://geodesic-test.mathdoc.fr/item/BASM_2019_3_a2/

[1] Aldhaifallah M., Nisar K. S., Sarivastava H. M., Mursaleen M., “Statistical $\Lambda$-convergence in probabilistic normed spaces”, J. Funct. Spaces, 2017, 3154280, 7 pp. | MR | Zbl

[2] Alotaibi A., Mursaleen M., “A-Statistical summability of Fourier series and Walsh-Fourier series”, Appl. Math. Inf. Sci., 6 (2012), 535–538 | MR

[3] Barros L. C., Bassanezi R. C., Tonelli P. A., “Fuzzy modelling in population dynamics”, Ecol. Model, 128 (2000), 27–33 | DOI

[4] Chawla Meenakshi, Saroa M. S., Kumar Vijay, “On $\Lambda$-statistical convergence of order $\alpha$ in random 2-normed space”, Miskolc Math. Notes, 16 (2015), 1003–1015 | DOI | MR

[5] Di Maio G., Kočinac Lj. D. R., “Statistical convergence in topology”, Topology Appl., 156:1 (2008), 28–45 | DOI | MR | Zbl

[6] Fast H., “Sur la convergence statistique”, Colloq. Math., 2 (1951), 241–244 | DOI | MR | Zbl

[7] Fradkov A. L., Evans R. J., “Control of choas: Methods and applications in engineering”, Chaos Solitons Fractals, 29 (2005), 33–56

[8] Fridy J. A., “On statistical convergence”, Analysis, 5 (1985), 301–313 | DOI | MR | Zbl

[9] Karakus S., “Statistical convergence on probabilstic normed space”, Math. Commun., 12 (2007), 11–23 | MR | Zbl

[10] Karakus S., Demirci K., Duman O., “Statistical convergence on intitionistic fuzzy topological spaces”, Chaos Solitons Fractals, 35:4 (2008), 763–769 | DOI | MR | Zbl

[11] Kočinac Lj. D. R., Khan V. A., Alshlool K. M. A. S., Altaf H., “On some topological properties of intitionistic 2-fuzzy $n$-normed linear spaces”, Hacet. J. Math. Stat. (to appear) | MR

[12] Gadjiev A. O., “Some approximation theorems via statistical convergence”, Rocky Mountain J. Math., 32:1 (2002) | DOI | MR | Zbl

[13] Giles R., “A computer program for fuzzy reasoning”, Fuzzy Sets and Systems, 4 (1980), 221–234 | DOI | MR | Zbl

[14] Maddox I. J., “Statistical convergence in locally convex space”, Math Proc. Camb. Phil. Soc., 104 (1988), 141–145 | DOI | MR | Zbl

[15] Madore J., “Fuzzy physics”, Ann. Phys., 219 (1992), 187–198 | DOI | MR

[16] Meenakshi, Kumar Vijay, Saroa M. S., “Some remarks on statistical summability of order $\tilde{\alpha}$ defined by generalised De la Valle-Poussin Mean”, Bol. Soc. Paran. Mat., 33:1 (2015), 147–156 | MR | Zbl

[17] Miller H. I., “A measure theoretical subsequence characterization of statistical convergence”, Trans. Amer. Math. Soc., 347:5 (1995), 1811–1819 | DOI | MR | Zbl

[18] Mohiunddine S. A., Danish Lohani Q. M., “On generalized statistical convergence in intitionistic fuzzy normed space”, Choas Solitons Fractals, 42:3 (2009), 1731–1737 | DOI | MR

[19] Mursaleen M., Mohiuddine S. A., “On lacunary statistical convergence with respect to the intitionistic fuzzy normed space”, J. Comput. Appl. Math., 233 (2009), 142–149 | DOI | MR | Zbl

[20] Mursaleen M., Noman A. K., “On the spaces of $\lambda$-convergent and bounded sequences”, Thai J. Math., 8:2 (2010), 311–329 | MR | Zbl

[21] Mursaleen M., Noman A. K., “On some new sequence spaces of non-absolute type related to the spaces $l_{p}$ and $l_{\infty}$ I”, Filomat, 25:2 (2011), 33–51 | DOI | MR | Zbl

[22] Mursaleen M., Noman A. K., “On some new sequence spaces of non-absolute type related to the spaces $l_{p}$ and $l_{\infty}$ II”, Math. Commun., 16:2 (2011), 383–398 | MR | Zbl

[23] Park J. H., “Intitionistic fuzzy metric spaces”, Chaos Solitons Fractals, 22 (2004), 1039–1046 | DOI | MR | Zbl

[24] Saadati R., Park J. H., “On the intitionistic fuzzy topological spaces”, Chaos Solitons Fractals, 27 (2006), 331–344 | DOI | MR | Zbl

[25] Schweizer B., Sklar A., “Statistical metric spaces”, Pacific J. Math., 10 (1960), 313–334 | DOI | MR | Zbl

[26] Zadeh L. A., “Fuzzy sets”, Inform. Control, 8 (1965), 338–353 | DOI | MR | Zbl