On limit cycles of polynomial systems of the first-order ODE's
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2019), pp. 113-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

Examples of four-dimensional Riemann metrics related with the ODE's of second order are constructed. Their properties and applications to the polynomial systems of ODE's of first order are considered.
@article{BASM_2019_2_a6,
     author = {Valery Dryuma},
     title = {On limit cycles of polynomial systems of the first-order {ODE's}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {113--126},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2019_2_a6/}
}
TY  - JOUR
AU  - Valery Dryuma
TI  - On limit cycles of polynomial systems of the first-order ODE's
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 113
EP  - 126
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2019_2_a6/
LA  - en
ID  - BASM_2019_2_a6
ER  - 
%0 Journal Article
%A Valery Dryuma
%T On limit cycles of polynomial systems of the first-order ODE's
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 113-126
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2019_2_a6/
%G en
%F BASM_2019_2_a6
Valery Dryuma. On limit cycles of polynomial systems of the first-order ODE's. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2019), pp. 113-126. https://geodesic-test.mathdoc.fr/item/BASM_2019_2_a6/

[1] Paterson E. M., Walker A. G., “Riemann extensions.”, Quart. J. Math. Oxford, 3 (1952), 19–28 | DOI | MR

[2] Dryuma V., “Geometric methods in theory of differential equations”, Mathematical Research, 122, “Stiinta”, Chisinau, 1990, 93–103 (in Russian)

[3] Dryuma V., “The Riemann and Einstein-Weyl geometries in the theory of ODE's, their applications and all that”, New Trends in Integrability and Partial Solvability, eds. A. B. Shabat et al., Kluwer Academic Publishers, 2004, 115–156 ; 2003, 37 pp., arXiv: nlin/0303023 [nlin.SI] | DOI | MR | Zbl

[4] Dryuma V., “On the Riemann Extension of the Gödel space-time metric”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2005, no. 3(49) | MR

[5] Dryuma V., Riemann Extension in theory of the first order systems of differential equations, 2005, 21 pp., arXiv: math/0510526 [math.DG] | MR

[6] Dryuma V., Eight-dimensional the Ricci-flat Riemann space related with the KP-equation, 2008, 5 pp., arXiv: 0810.0346 [nlin.SI] | MR

[7] Hietarinta J., Dryuma V., Is my ODE a Painleve equation in disguise?, J. Nonlinear Math. Phys., 9, suppl. 1 (2002), 67–-74 | DOI | MR | Zbl

[8] Dryuma V., “On the equation of homologous sphere of Poincare”, Classical and Modern Geometry, Proceedings of International Conference dedicated to the centenary of V. T. Bazylev (MSPU, Moscow, 22–25 Aprilie, 2019), 20–21

[9] Dyuma V., “The Monge equation and toplogy of the second order ODE's”, Proceedings IMCS-50, The Third Conference of Mathematical Society of the RM (August 19–23, 2014), 191–-194

[10] Perko L. M., “Limit cycles of quadtratic systems in the plane”, Rocky Mountain Journal of Mathematics, 14:3 (1984), 619–-645 | DOI | MR | Zbl