Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2019_2_a6, author = {Valery Dryuma}, title = {On limit cycles of polynomial systems of the first-order {ODE's}}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {113--126}, publisher = {mathdoc}, number = {2}, year = {2019}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2019_2_a6/} }
TY - JOUR AU - Valery Dryuma TI - On limit cycles of polynomial systems of the first-order ODE's JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2019 SP - 113 EP - 126 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2019_2_a6/ LA - en ID - BASM_2019_2_a6 ER -
Valery Dryuma. On limit cycles of polynomial systems of the first-order ODE's. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2019), pp. 113-126. https://geodesic-test.mathdoc.fr/item/BASM_2019_2_a6/
[1] Paterson E. M., Walker A. G., “Riemann extensions.”, Quart. J. Math. Oxford, 3 (1952), 19–28 | DOI | MR
[2] Dryuma V., “Geometric methods in theory of differential equations”, Mathematical Research, 122, “Stiinta”, Chisinau, 1990, 93–103 (in Russian)
[3] Dryuma V., “The Riemann and Einstein-Weyl geometries in the theory of ODE's, their applications and all that”, New Trends in Integrability and Partial Solvability, eds. A. B. Shabat et al., Kluwer Academic Publishers, 2004, 115–156 ; 2003, 37 pp., arXiv: nlin/0303023 [nlin.SI] | DOI | MR | Zbl
[4] Dryuma V., “On the Riemann Extension of the Gödel space-time metric”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2005, no. 3(49) | MR
[5] Dryuma V., Riemann Extension in theory of the first order systems of differential equations, 2005, 21 pp., arXiv: math/0510526 [math.DG] | MR
[6] Dryuma V., Eight-dimensional the Ricci-flat Riemann space related with the KP-equation, 2008, 5 pp., arXiv: 0810.0346 [nlin.SI] | MR
[7] Hietarinta J., Dryuma V., Is my ODE a Painleve equation in disguise?, J. Nonlinear Math. Phys., 9, suppl. 1 (2002), 67–-74 | DOI | MR | Zbl
[8] Dryuma V., “On the equation of homologous sphere of Poincare”, Classical and Modern Geometry, Proceedings of International Conference dedicated to the centenary of V. T. Bazylev (MSPU, Moscow, 22–25 Aprilie, 2019), 20–21
[9] Dyuma V., “The Monge equation and toplogy of the second order ODE's”, Proceedings IMCS-50, The Third Conference of Mathematical Society of the RM (August 19–23, 2014), 191–-194
[10] Perko L. M., “Limit cycles of quadtratic systems in the plane”, Rocky Mountain Journal of Mathematics, 14:3 (1984), 619–-645 | DOI | MR | Zbl