Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2019_2_a5, author = {Mihail Popa and Victor Pricop}, title = {On the upper bound of the number of functionally independent focal quantities of the {Lyapunov} differential system}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {99--112}, publisher = {mathdoc}, number = {2}, year = {2019}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2019_2_a5/} }
TY - JOUR AU - Mihail Popa AU - Victor Pricop TI - On the upper bound of the number of functionally independent focal quantities of the Lyapunov differential system JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2019 SP - 99 EP - 112 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2019_2_a5/ LA - en ID - BASM_2019_2_a5 ER -
%0 Journal Article %A Mihail Popa %A Victor Pricop %T On the upper bound of the number of functionally independent focal quantities of the Lyapunov differential system %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2019 %P 99-112 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2019_2_a5/ %G en %F BASM_2019_2_a5
Mihail Popa; Victor Pricop. On the upper bound of the number of functionally independent focal quantities of the Lyapunov differential system. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2019), pp. 99-112. https://geodesic-test.mathdoc.fr/item/BASM_2019_2_a5/
[1] Popa M. N., Pricop V. V., “Applications of algebraic methods in solving the center-focus problem”, Bul. Acad. Ştiinţe Repub. Moldova, Matematica, 2013, no. 1(71), 45–71, arXiv: 1310.4343 [math.DS] | MR | Zbl
[2] Popa M. N., Pricop V. V., The center and focus problem: algebraic solutions and hypotheses, Academy of Sciences of Moldova, Chişinău, 2018 (in Russian) | MR
[3] Popa M. N., Algebraic methods for differential systems, The Flower Power Edit, 2004 (in Romanian) | Zbl
[4] Sibirsky K. S., Introduction to the algebraic theory of invariants of differential equations, Translated from Russian, Nonlinear Science: Theory and Applications, Manchester University Press, Manchester, 1988 | MR | Zbl
[5] Pontryagin L. S., Ordinary differential equations, Addison Wesley Publishing Company, London, 1962, vi+298 pp. | MR | Zbl
[6] Sibirsky K. S., Algebraic Invariants of Differential Equations and Matrices, Shtiintsa, Kishinev, 1976 (in Russian) | MR
[7] Sadovsky A. P., Polynomial ideals and varieties, BSU, Minsk, 2008 (in Russian)