The topological classification of a family of quadratic differential systems in terms of affine invariant polynomials
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2019), pp. 41-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we provide affine invariant necessary and sufficient conditions for a non-degenerate quadratic differential system to have an invariant conic f(x,y)=0 and a Darboux invariant of the form f(x,y)λest with λ,sR and s0. The family of all such systems has a total of seven topologically distinct phase portraits. For each one of these seven phase portraits we provide necessary and sufficient conditions in terms of affine invariant polynomials for a non-degenerate quadratic system in this family to possess this phase portrait.
@article{BASM_2019_2_a2,
     author = {Dana Schlomiuk and Nicolae Vulpe},
     title = {The topological classification of a family of quadratic differential systems in terms of affine invariant polynomials},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {41--55},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2019_2_a2/}
}
TY  - JOUR
AU  - Dana Schlomiuk
AU  - Nicolae Vulpe
TI  - The topological classification of a family of quadratic differential systems in terms of affine invariant polynomials
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 41
EP  - 55
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2019_2_a2/
LA  - en
ID  - BASM_2019_2_a2
ER  - 
%0 Journal Article
%A Dana Schlomiuk
%A Nicolae Vulpe
%T The topological classification of a family of quadratic differential systems in terms of affine invariant polynomials
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 41-55
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2019_2_a2/
%G en
%F BASM_2019_2_a2
Dana Schlomiuk; Nicolae Vulpe. The topological classification of a family of quadratic differential systems in terms of affine invariant polynomials. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2019), pp. 41-55. https://geodesic-test.mathdoc.fr/item/BASM_2019_2_a2/

[1] Artés J. C., Llibre J., Schlomiuk D., “The geometry of quadratic polynomial differential systems with a weak focus and an invariant straight line”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20:11 (2010), 3627–3662 | DOI | MR | Zbl

[2] Artés J. C., Llibre J., Schlomiuk D., Vulpe N., “Geometric configurations of singularities for quadratic differential systems with three distinct real simple finite singularities”, J. Fixed Point Theory Appl., 14:2 (2013), 555–618 | DOI | MR | Zbl

[3] Artés J. C., Llibre J., Schlomiuk D., Vulpe N., “From topological to geometric equivalence in the classification of singularities at infinity for quadratic vector fields”, Rocky Mountain J. of Math., 45:1 (2015), 29–113 | DOI | MR | Zbl

[4] Artés J. C., Llibre J., Schlomiuk D., Vulpe N., “Geometric configurations of singularities of planar polynomial differential systems”, A global classification in the quadratic case, Springer Nature Switzerland AG

[5] Baltag V. A., Vulpe N. I., “Total multiplicity of all finite critical points of the polynomial differential system”, Planar nonlinear dynamical systems (Delft, 1995), Differ. Equ. Dyn. Syst., 5, 1997, 455–471 | MR | Zbl

[6] Bularas D., Calin Iu., Timochouk L., Vulpe N., T–comitants of quadratic systems: A study via the translation invariants, Report No 96–90, Delft University of Technology, Faculty of Technical Mathematics and Informatics, 1996

[7] Christopher C., “Quadratic systems having a parabola as an integral curve”, Proc. Roy. Soc. Edinburgh Sect. A, 112 (1989), 113–134 | DOI | MR | Zbl

[8] Grace J. H., Young A., The algebra of invariants, Stechert, New York, 1941 | MR

[9] Llibre J., Oliveira R., “Quadratic systems with an invariant conic having Darboux invariants”, Commun. Contemp. Math., 19, no. 3 (2017) | MR | Zbl

[10] Oliveira R. D. S., Rezende A. C., Vulpe N., “Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space $\mathbb{R}^{12}$”, Electron. J. Differential Equations, 2016 (2016), 162, 79 pp. | MR

[11] Oliveira R. D. S., Rezende A. C., Schlomiuk D., Vulpe N., “Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas”, Electron. J. Differential Equations, 2017, 295, 122 pp. | MR

[12] Olver P. J., Classical invariant theory, London Mathematical Society Student Texts, 44, Cambridge University Press, Cambridge, 1999, 280 pp. | MR | Zbl

[13] Schlomiuk D., “Topological and polynomial invariants, moduli spaces, in classification problems of polynomial vector fields”, Publ. Mat., 58 (2014), 461–496 | DOI | MR

[14] Schlomiuk D., Vulpe N., “Planar quadratic differential systems with invariant straight lines of at least five total multiplicity”, Qual. Theory Dyn. Syst., 5 (2004), 135–194 | DOI | MR | Zbl

[15] Schlomiuk D., Vulpe N., “Geometry of quadratic differential systems in the neighborhood of infinity”, J. Differential Equations, 215 (2005), 357–400 | DOI | MR | Zbl

[16] Schlomiuk D., Vulpe N., “The full study of planar quadratic differential systems possessing a line of singularities at infinity”, J. Dynam. Differential Equations, 20:4 (2008), 737–775 | DOI | MR | Zbl

[17] Schlomiuk D., Vulpe N., “Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four”, Bul. Acad. Stiinte Repub. Mold. Mat., 2008, no. 1, 27–83 | MR | Zbl

[18] D. Schlomiuk, N. Vulpe, “Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity”, Rocky Mountain J. Math., 38:6 (2008), 1–60 | DOI | MR

[19] Schlomiuk D., Vulpe N., “Planar quadratic differential systems with invariant straight lines of total multiplicity four”, Nonlinear Anal., 68:4 (2008), 681–715 | DOI | MR | Zbl

[20] Schlomiuk D., Vulpe N., “Global classification of the planar Lotka-Volterra differential system according to their configurations of invariant straight lines”, J. Fixed Point Theory Appl., 8 (2010), 177–245 | DOI | MR | Zbl

[21] Schlomiuk D., Vulpe N., “Global topological classification of Lotka-Volterra quadratic differential systems”, Electron. J. Differential Equations, 2012, 64, 69 pp. | MR | Zbl

[22] Schlomiuk D., Zhang X., “Quadratic differential systems with complex conjugate invariant lines meeting at a finite point”, J. of Diff. Eq., 265:8 (2018), 3650–3684 | DOI | MR | Zbl

[23] “Shtiintsa”, Kishinev, 1982 | MR | MR