Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2019_1_a9, author = {A. I. Kashu}, title = {Morita contexts and closure operators in modules}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {109--122}, publisher = {mathdoc}, number = {1}, year = {2019}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a9/} }
A. I. Kashu. Morita contexts and closure operators in modules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 109-122. https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a9/
[1] Amitsur S. A., “Rings of quotients and Morita contexts”, J. of Algebra, 17:2 (1971), 273–298 | DOI | MR | Zbl
[2] Cohn P. M., Morita equivalence and duality, Mathematical Notes, Queen Mary College, London, 1966 | MR
[3] Dikranjan D., Tholen W., Categorical structure of closure operators, Kluwer Academic Publishers, 1995 | MR | Zbl
[4] Dikranjan D., Giuli E., “Factorizations, injectivity and completeness in categories of modules”, Commun. in Algebra, 19:1 (1991), 45–83 | DOI | MR | Zbl
[5] Faith C., Algebra: rings, modules and categories, v. I, Springer Verlag, Berlin–Heidelberg–New York, 1973 | MR | Zbl
[6] Kashu A. I., “Closure operators in the categories of modules. Part I”, Algebra and Discrete Mathematics, 15:2 (2013), 213–228 | MR | Zbl
[7] Kashu A. I., “Closure operators in the categories of modules. Part II”, Algebra and Discrete Mathematics, 16:1 (2013), 81–95 | MR | Zbl
[8] Kashu A. I., “Morita contexts and torsions of modules”, Matem. Zametki, 28:4 (1980), 491–499 (in Russian) | MR | Zbl
[9] Lam T. Y., Lectures on modules and rings, Graduate Texts in Math., 189, Springer Verlag, New York, 1999 | DOI | MR | Zbl
[10] Morita K., “Duality for modules and its application to the theory of rings with minimum condition”, Science Reports of the Tokyo Kyoiku Daigaku, Sect. A, 6:150 (1958), 83–142 | MR | Zbl