Morita contexts and closure operators in modules
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 109-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

The relations between the classes of closure operators of two module categories R-Mod and S-Mod are studied in the case when an arbitrary Morita context  (R,RUS, SVR,S) is given. By the functors HomR(U,) and HomS(V,) two mappings are defined between the closure operators of these categories. Basic properties of these mappings are investigated.
@article{BASM_2019_1_a9,
     author = {A. I. Kashu},
     title = {Morita contexts and closure operators in modules},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {109--122},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a9/}
}
TY  - JOUR
AU  - A. I. Kashu
TI  - Morita contexts and closure operators in modules
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 109
EP  - 122
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a9/
LA  - en
ID  - BASM_2019_1_a9
ER  - 
%0 Journal Article
%A A. I. Kashu
%T Morita contexts and closure operators in modules
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 109-122
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a9/
%G en
%F BASM_2019_1_a9
A. I. Kashu. Morita contexts and closure operators in modules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 109-122. https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a9/

[1] Amitsur S. A., “Rings of quotients and Morita contexts”, J. of Algebra, 17:2 (1971), 273–298 | DOI | MR | Zbl

[2] Cohn P. M., Morita equivalence and duality, Mathematical Notes, Queen Mary College, London, 1966 | MR

[3] Dikranjan D., Tholen W., Categorical structure of closure operators, Kluwer Academic Publishers, 1995 | MR | Zbl

[4] Dikranjan D., Giuli E., “Factorizations, injectivity and completeness in categories of modules”, Commun. in Algebra, 19:1 (1991), 45–83 | DOI | MR | Zbl

[5] Faith C., Algebra: rings, modules and categories, v. I, Springer Verlag, Berlin–Heidelberg–New York, 1973 | MR | Zbl

[6] Kashu A. I., “Closure operators in the categories of modules. Part I”, Algebra and Discrete Mathematics, 15:2 (2013), 213–228 | MR | Zbl

[7] Kashu A. I., “Closure operators in the categories of modules. Part II”, Algebra and Discrete Mathematics, 16:1 (2013), 81–95 | MR | Zbl

[8] Kashu A. I., “Morita contexts and torsions of modules”, Matem. Zametki, 28:4 (1980), 491–499 (in Russian) | MR | Zbl

[9] Lam T. Y., Lectures on modules and rings, Graduate Texts in Math., 189, Springer Verlag, New York, 1999 | DOI | MR | Zbl

[10] Morita K., “Duality for modules and its application to the theory of rings with minimum condition”, Science Reports of the Tokyo Kyoiku Daigaku, Sect. A, 6:150 (1958), 83–142 | MR | Zbl