A note on almost contact metric 2- and 3-hypersurfaces in W4-manifolds
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 103-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that 2-hypersurfaces and 3-hypersurfaces of W4-manifolds admit identical almost contact metric structures.
@article{BASM_2019_1_a8,
     author = {Mihail B. Banaru and Galina A. Banaru and Tatiana L. Melekhina},
     title = {A note on almost contact metric $2$- and $3$-hypersurfaces in $W_4$-manifolds},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {103--108},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a8/}
}
TY  - JOUR
AU  - Mihail B. Banaru
AU  - Galina A. Banaru
AU  - Tatiana L. Melekhina
TI  - A note on almost contact metric $2$- and $3$-hypersurfaces in $W_4$-manifolds
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 103
EP  - 108
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a8/
LA  - en
ID  - BASM_2019_1_a8
ER  - 
%0 Journal Article
%A Mihail B. Banaru
%A Galina A. Banaru
%A Tatiana L. Melekhina
%T A note on almost contact metric $2$- and $3$-hypersurfaces in $W_4$-manifolds
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 103-108
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a8/
%G en
%F BASM_2019_1_a8
Mihail B. Banaru; Galina A. Banaru; Tatiana L. Melekhina. A note on almost contact metric $2$- and $3$-hypersurfaces in $W_4$-manifolds. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 103-108. https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a8/

[1] Abu-Saleem A., Banaru M., Banaru G., “A note on 2-hypersurfaces of the nearly Kählerian six-sphere”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 3(85):107–114 (2017) | MR | Zbl

[2] Banaru M., “Almost contact metric hypersurfaces with type number 0 or 1 in nearly-Kählerian manifolds”, Moscow University Mathematics Bulletin, 69:3 (2014), 132–134 | DOI | MR | Zbl

[3] Banaru M., “On almost contact metric 2-hypersurfaces in Kählerian manifolds”, Bulletin of the Transilvania University of Braşov. Series III. Mathematics, Informatics, Physics, 9(58):1 (2016), 1–10 | MR | Zbl

[4] Banaru M., “A note on geometry of special Hermitian manifolds”, Lobachevskii Journal of Mathematics, 39:1 (2018), 20–24 | DOI | MR | Zbl

[5] Banaru M., “On almost contact metric hypersurfaces with small type numbers in $W_4$-manifolds”, Moscow University Mathematics Bulletin, 73:1 (2018), 38–40 | DOI | MR | Zbl

[6] Banaru M., Kirichenko V., “Almost contact metric structures on the hypersurface of almost Hermitian manifolds”, Journal of Mathematical Sciences (New York), 207:4 (2015), 513–537 | DOI | MR | Zbl

[7] Gray A., Hervella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Mat. Pura Appl., 123:4 (1980), 35–58 | DOI | MR | Zbl

[8] Kirichenko V., Differential-geometric structures on manifolds, Pechatnyi Dom, Odessa, 2013 (in Russian)