Isohedral tilings by 14-, 16- and 18-gons for hyperbolic translation group of genus two
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 91-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are 2 types of isohedral tilings of the Euclidean plane with disks for the translation group p1. In the hyperbolic plane there exist countably many translation groups, each translation group is characterized by its genus. The present article continues work [7] and studies isohedral tilings of the hyperbolic plane with disks for the translation group of genus two. We use the technique of adjacency symbols, developed by B. N. Delone for the Euclidean plane. In [7] isohedral tilings of the hyperbolic plane with 8-, 10- and 12-gons were obtained. In the present article isohedral tilings of the hyperbolic plane with 14-, 16- and 18-gons are obtained, thus completing the enumeration.
@article{BASM_2019_1_a7,
     author = {Elizaveta Zamorzaeva},
     title = {Isohedral tilings by $14$-, $16$- and $18$-gons for hyperbolic translation group of genus two},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {91--102},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a7/}
}
TY  - JOUR
AU  - Elizaveta Zamorzaeva
TI  - Isohedral tilings by $14$-, $16$- and $18$-gons for hyperbolic translation group of genus two
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 91
EP  - 102
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a7/
LA  - en
ID  - BASM_2019_1_a7
ER  - 
%0 Journal Article
%A Elizaveta Zamorzaeva
%T Isohedral tilings by $14$-, $16$- and $18$-gons for hyperbolic translation group of genus two
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 91-102
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a7/
%G en
%F BASM_2019_1_a7
Elizaveta Zamorzaeva. Isohedral tilings by $14$-, $16$- and $18$-gons for hyperbolic translation group of genus two. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 91-102. https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a7/

[1] Macbeath A. M., “The classification of non-Euclidean plane crystallographic groups”, Canad. J. Math., 19 (1967), 1192–1205 | DOI | MR | Zbl

[2] Conway J. H., “The orbifold notation for surface groups”, Groups, Combinatorics and Geometry, London Math. Soc. Lecture Note Series, 165, Cambridge University Press, 1992, 438–447 | MR | Zbl

[3] Lučić Z., Molnár E., “Combinatorial classification of fundamental domains of finite area for planar discontinuous isometry groups”, Archiv der Matematik, 54 (1990), 511–520 | MR

[4] Lučić Z., Molnár E., “Fundamental domains for planar discontinuous groups and uniform tilings”, Geom. Dedicata, 40 (1991), 125–143 | DOI | MR

[5] Huson D. H., “The generation and classification of tile-$k$-transitive tilings of the Euclidean plane, the sphere and the hyperbolic plane”, Geom. Dedicata, 47 (1993), 269–296 | DOI | MR | Zbl

[6] Balke L., Huson D. H., “Two-dimensional groups, orbifolds and tilings”, Geom. Dedicata, 60 (1996), 89–106 | DOI | MR | Zbl

[7] Zamorzaeva E., “Isohedral tilings by 8-, 10- and 12-gons for hyperbolic translation group of genus two”, Bul. Acad. Ştiinţe Repub. Moldova. Mat., 2018, no. 2, 74–84 | MR

[8] Grünbaum B., Shephard G. C., Tilings and Patterns, Freeman, New York, 1987 | MR | Zbl

[9] Delone B. N., “Theory of planigons”, Izvestiya Akad. Nauk SSSR. Ser. Matem., 23 (1959), 365–386 (in Russian) | MR | Zbl

[10] Proc. Steklov Inst. Math., 4 (1980), 111–141 | MR | Zbl

[11] Zamorzaeva E., “On isohedral tilings of hyperbolic manifolds”, Analele Ştiinţifice ale Universităţii 'Al. I. Cuza' Iaşi, s. 1a, Matematică, 59:1 (1997), 81–88 | MR

[12] Zamorzaeva E. A., “On the classification of tilings on Riemann surfaces of genus two”, Bul. Acad. Ştiinţe Repub. Moldova. Mat., 2000, no. 2, 39–50 | MR | Zbl