On fully idempotent semimodules
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 39-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let S be a semiring and M an S-semimodule. Let N and L be subsemimodules of M. Set NL:=HomS(M,L)N={φ(N)φHomS(M,L)}. Then N is called an idempotent subsemimodule of M, if N=NN. An S-semimodule M is called fully idempotent if every subsemimodule of M is idempotent. In this paper we study the concept of fully idempotent semimodules as a generalization of fully idempotent modules and investigate some properties of idempotent subsemimodules of multiplication semimodules.
@article{BASM_2019_1_a3,
     author = {Rafieh Razavi Nazari and Shaban Ghalandarzadeh},
     title = {On fully idempotent semimodules},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {39--51},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a3/}
}
TY  - JOUR
AU  - Rafieh Razavi Nazari
AU  - Shaban Ghalandarzadeh
TI  - On fully idempotent semimodules
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 39
EP  - 51
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a3/
LA  - en
ID  - BASM_2019_1_a3
ER  - 
%0 Journal Article
%A Rafieh Razavi Nazari
%A Shaban Ghalandarzadeh
%T On fully idempotent semimodules
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 39-51
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a3/
%G en
%F BASM_2019_1_a3
Rafieh Razavi Nazari; Shaban Ghalandarzadeh. On fully idempotent semimodules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 39-51. https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a3/

[1] Abuhlail J. Y., “Semicorings and semicomodules”, Comm. Algebra, 42 (2014), 4801–4838 | DOI | MR | Zbl

[2] Abuhlail J. Y., Il'in S. N., Katsov Y., Nam T. G., “On V-semirings and semirings all of whose cyclic semimodules are injective”, Comm. Algebra, 43 (2015), 4632–4654 | DOI | MR | Zbl

[3] Ahsan J., “Fully idempotent semirings”, Proc. Japan Acad. Ser. A Math. Sci., 69 (1993), 185–188 | DOI | MR | Zbl

[4] Ebrahimi Atani R., “Prime subsemimodules of semimodules”, Int. J. Algebra, 4:26 (2010), 1299–1306 | MR | Zbl

[5] Ebrahimi Atani S., Shajari Kohan M., “A note on finitely generated multiplication semimodules over commutative semirings”, Int. J. Algebra, 4:8 (2010), 389–396 | MR | Zbl

[6] El Bashir R., Hurt J., Jančařík A., Kepka T., “Simple commutative semirings”, J. Algebra, 236:1 (2001), 277–306 | DOI | MR | Zbl

[7] Golan J. S., Semirings and Their Applications, Kluwer Academic Publishers, Dordrecht, 1999 | MR | Zbl

[8] Il'in S. N., “On injective envelopes of semimodules over semirings”, J. Algebra Appl., 15:6 (2016), 1650122, 13 pp. | DOI | MR | Zbl

[9] Keskin Tütüncü D., Orhan Ertaş N., Tribak R., Smith P. F., “On fully idempotent modules”, Comm. Algebra, 39:8 (2011), 2707–2722 | DOI | MR | Zbl

[10] Lomp C., “Prime elements in partially ordered groupoids applied to Hopf algebra actions”, J. Algebra Appl., 4:1 (2005), 77–98 | DOI | MR

[11] Orhan Ertaş N., “Fully idempotent and multiplication modules”, Palest. J. Math., 3:1 (2014), 432–437 | MR | Zbl

[12] Pareigis B., Rohrl H., Remarks on semimodules, 2013, arXiv: 1305.5531

[13] Razavi Nazari R., Ghalandarzadeh S., Multiplication semimodules, arXiv: 1904.11729 | MR

[14] Shabir M., Some characterizations and sheaf representations of regular and weakly regular monoids and semirings, PhD Thesis, Quaid-I-Azam University, Pakistan, 1995

[15] Smith P. F., “Multiplication modules and projective modules”, Period. Math. Hungar., 29 (1994), 163–168 | DOI | MR | Zbl

[16] Zelmanowitz J., “Regular modules”, Trans. Amer. Math. Soc., 163 (1972), 341–355 | DOI | MR | Zbl