On invariant submanifolds of S-manifolds
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 30-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider invariant, pseudo-parallel and Ricci generalized pseudo-parallel submanifolds of S-manifolds. We show that the submanifolds are totally geodesic under certain conditions. Also we study an invariant submanifold of S-manifold satisfying Q(σ,R)=0 and Q(S,σ)=0, where S, R and σ are the Ricci tensor, curvature tensor and the second fundamental form respectively.
@article{BASM_2019_1_a2,
     author = {Fatiha Mahi and Mohamed Belkhelfa},
     title = {On invariant submanifolds of $S$-manifolds},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {30--38},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a2/}
}
TY  - JOUR
AU  - Fatiha Mahi
AU  - Mohamed Belkhelfa
TI  - On invariant submanifolds of $S$-manifolds
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 30
EP  - 38
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a2/
LA  - en
ID  - BASM_2019_1_a2
ER  - 
%0 Journal Article
%A Fatiha Mahi
%A Mohamed Belkhelfa
%T On invariant submanifolds of $S$-manifolds
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 30-38
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a2/
%G en
%F BASM_2019_1_a2
Fatiha Mahi; Mohamed Belkhelfa. On invariant submanifolds of $S$-manifolds. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 30-38. https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a2/

[1] Asperti A. C., Lobos G. A., Mercuri F., “Pseudo-parallel immersions in space form”, Math. Contemp., 17 (1999), 59–70 | MR | Zbl

[2] Asperti A. C., Lobos G. A., Mercuri F., “Pseudo-parallel submanifolds of a space form”, Adv. Geom., 2 (2002), 57–71 | MR | Zbl

[3] Blair D. E., “Geometry of manifolds with structural group $U(n)*O(s)$”, J. Differential Geometry, 4 (1970), 155–167 | DOI | MR | Zbl

[4] Cabrerizo J. L., Fernandez L. M., Fernandez M., “The curvature of submanifolds of $\mathcal{S}$-space forms”, Acta Math. Hung., 62:3–4 (1993), 373–383 | DOI | MR | Zbl

[5] Chen B. Y., Geometry of submanifolds, Dekker, New York, 1973 | MR | Zbl

[6] Deprez J., “Semi-parallel surfaces in Euclidean space”, J. Geom., 25 (1985), 192–200 | DOI | MR | Zbl

[7] Deszcz R., “On pseudosymmetric spaces.”, Bull. Soc. Math. Belg. Sér. A, 44 (1992), 1–34 | MR | Zbl

[8] Ferus D., “Immersions with parallel second fundamental form”, Math. Zeitschrift, 140 (1974), 87–92 | DOI | MR

[9] Hasegawa I., Okuyama Y., Abe T., “On p-th Sasakian manifolds.”, J. Hokkaido univ. Educ. (Sect. 2A), 37 (1986), 1–16 | MR

[10] Kobayashi M., Tsuchiya S., “Invariant submanifolds of an f-manifold with complemented frames”, Kodai Math. Sem. Rep., 24 (1972), 430–450 | DOI | MR | Zbl

[11] Kon M., “Invariant submanifolds of normal contact metric manifolds”, Kodai Math. Sem. Rep., 25 (1973), 330–336 | DOI | MR | Zbl

[12] Kowalczyk D., “On some subclass of semisymmetric manifolds”, Soochow J. Math., 27 (2001), 445–461 | MR | Zbl

[13] Murathan C., Arslan K., Ezentas R., “Ricci generalized pseudo-parallel immersions”, Differential geometry and its applications, DGA Proceedings (Prague, 2005), 99–108 | MR | Zbl

[14] Özgür C., Sular S., Murathan C., “On pseudo-parallel invariant submanifolds of contact metric manifolds”, Bull. Transilv. Univ. Brasov Ser. B (N.S.), 14(49), Suppl. (2007), 227–234 | MR | Zbl

[15] Surkar A., Matilal S., “Invariant submanifolds of LP-Sasakian manifolds”, Extracta Mathematicae, 27:1 (2012), 145–154 | MR

[16] Terlizzi L. D. I., “On invariant submanifolds of C and S-manifolds”, Acta Math. Hungar., 85 (1999), 229–239 | DOI | MR | Zbl

[17] Yano K., Kon M., Structures on manifolds, World Scientific, Singapore, 1984 | MR | Zbl

[18] Yildiz A., Murathan C., “Invariant submanifolds of Sasakian space forms”, J. Geom., 95 (2009), 135–150 | DOI | MR | Zbl