Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2019_1_a1, author = {Peter V. Danchev}, title = {$n${-Torsion} regular rings}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {20--29}, publisher = {mathdoc}, number = {1}, year = {2019}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a1/} }
Peter V. Danchev. $n$-Torsion regular rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 20-29. https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a1/
[1] S. S. Breaz, P. V. Danchev, Y. Zhou, “Rings in which every element is either a sum or a difference of a nilpotent and an idempotent”, J. Algebra Appl. (8), 15 (2016) | MR | Zbl
[2] V. P. Camillo, D. Khurana, “A characterization of unit regular rings”, Commun. Algebra, 29 (2001), 2293–2295 | DOI | MR | Zbl
[3] P. V. Danchev, “A new characterization of boolean rings with identity”, Irish Math. Soc. Bull., 76 (2015), 55–60 | MR | Zbl
[4] P. V. Danchev, “Weakly UU rings”, Tsukuba J. Math., 40 (2016), 101–118 | DOI | MR | Zbl
[5] P. V. Danchev, “Invo-clean unital rings”, Commun. Korean Math. Soc., 32 (2017), 19–27 | DOI | MR | Zbl
[6] P. V. Danchev, “On exchange $\pi$-UU unital rings”, Toyama Math. J., 39 (2017), 1–7 | MR | Zbl
[7] P. V. Danchev, “Weakly invo-clean unital rings”, Afr. Mat., 28 (2017), 1285–1295 | DOI | MR | Zbl
[8] P. V. Danchev, “Uniqueness in von Neumann regular rings”, Palestine J. Math., 7 (2018), 60–63 | MR | Zbl
[9] P. V. Danchev, “Invo-regular unital rings”, Ann. Univ. Mariae Curie-Sklodowska, Math., 72 (2018), 45–53 | MR | Zbl
[10] P. V. Danchev, “A characterization of weakly J$(n)$-rings”, J. Math. Appl., 41 (2018), 53–61 | MR
[11] P. V. Danchev, “Weakly clean and exchange UNI rings”, Ukrain. Math. J., 71 (2019)
[12] P. V. Danchev, T. Y. Lam, “Rings with unipotent units”, Publ. Math. Debrecen, 88 (2016), 449–466 | DOI | MR | Zbl
[13] P. Danchev, J. Matczuk, “$n$-Torsion clean rings”, Contemp. Math., 727 (2019), 71–82 | DOI | MR
[14] P. V. Danchev, W. Wm. McGovern, “Commutative weakly nil clean unital rings”, J. Algebra (5), 425 (2015), 410–422 | DOI | MR | Zbl
[15] A. J. Diesl, “Nil clean rings”, J. Algebra, 383 (2013), 197–211 | DOI | MR | Zbl
[16] G. Ehrlich, “Unit-regular rings”, Portugal. Math., 27 (1968), 209–212 | MR | Zbl
[17] M. Ferrero, E. Puczylowski, S. Sidki, “On the representation of an idempotent as a sum of nilpotent elements”, Canad. Math. Bull., 39 (1996), 178–185 | DOI | MR | Zbl
[18] K. R. Goodearl, Von Neumann Regular Rings, second edition, Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1991 | MR
[19] Y. Hirano, H. Tominaga, A. Yaqub, “On rings in which every element is uniquely expressible as a sum of a nilpotent element and a certain potent element”, Math. J. Okayama Univ. (1), 30 (1988), 33–40 | MR | Zbl
[20] T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Math., 131, Second Edition, Springer-Verlag, Berlin–Heidelberg–New York, 2001 | DOI | MR | Zbl
[21] W. K. Nicholson, “Lifting idempotents and exchange rings”, Trans. Amer. Math. Soc., 229 (1977), 269–278 | DOI | MR | Zbl
[22] W. K. Nicholson, “Strongly clean rings and Fitting's lemma”, Commun. Algebra, 27 (1999), 3583–3592 | DOI | MR | Zbl
[23] P. P. Nielsen, J. Šter, “Connections between unit-regularity, regularity, cleanness and strong cleanness of elements and rings”, Trans. Amer. Math. Soc., 370 (2018), 1759–1782 | DOI | MR | Zbl
[24] V. Perić, “On rings with polynomial identity $x^n-x=0$”, Publ. Inst. Math. (Beograd) (N.S.), 34(48) (1983), 165–168 | MR
[25] A. A. Tuganbaev, Rings Close to Regular, Mathematics and its Applications, 545, Kluwer Academic Publishers, Dordrecht, 2002 | MR | Zbl