n-Torsion regular rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 20-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

As proper subclasses of the classes of unit-regular and strongly regular rings, respectively, the two new classes of n-torsion regular rings and strongly n-torsion regular rings are introduced and investigated for any natural number n. Their complete isomorphism classification is given as well. More concretely, although it has been recently shown by Nielsen–Šter (TAMS, 2018) that unit-regular rings need not be strongly clean, the rather curious fact that, for each positive odd integer n, the n-torsion regular rings are always strongly clean is proved.
@article{BASM_2019_1_a1,
     author = {Peter V. Danchev},
     title = {$n${-Torsion} regular rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {20--29},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a1/}
}
TY  - JOUR
AU  - Peter V. Danchev
TI  - $n$-Torsion regular rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 20
EP  - 29
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a1/
LA  - en
ID  - BASM_2019_1_a1
ER  - 
%0 Journal Article
%A Peter V. Danchev
%T $n$-Torsion regular rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 20-29
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a1/
%G en
%F BASM_2019_1_a1
Peter V. Danchev. $n$-Torsion regular rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 20-29. https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a1/

[1] S. S. Breaz, P. V. Danchev, Y. Zhou, “Rings in which every element is either a sum or a difference of a nilpotent and an idempotent”, J. Algebra Appl. (8), 15 (2016) | MR | Zbl

[2] V. P. Camillo, D. Khurana, “A characterization of unit regular rings”, Commun. Algebra, 29 (2001), 2293–2295 | DOI | MR | Zbl

[3] P. V. Danchev, “A new characterization of boolean rings with identity”, Irish Math. Soc. Bull., 76 (2015), 55–60 | MR | Zbl

[4] P. V. Danchev, “Weakly UU rings”, Tsukuba J. Math., 40 (2016), 101–118 | DOI | MR | Zbl

[5] P. V. Danchev, “Invo-clean unital rings”, Commun. Korean Math. Soc., 32 (2017), 19–27 | DOI | MR | Zbl

[6] P. V. Danchev, “On exchange $\pi$-UU unital rings”, Toyama Math. J., 39 (2017), 1–7 | MR | Zbl

[7] P. V. Danchev, “Weakly invo-clean unital rings”, Afr. Mat., 28 (2017), 1285–1295 | DOI | MR | Zbl

[8] P. V. Danchev, “Uniqueness in von Neumann regular rings”, Palestine J. Math., 7 (2018), 60–63 | MR | Zbl

[9] P. V. Danchev, “Invo-regular unital rings”, Ann. Univ. Mariae Curie-Sklodowska, Math., 72 (2018), 45–53 | MR | Zbl

[10] P. V. Danchev, “A characterization of weakly J$(n)$-rings”, J. Math. Appl., 41 (2018), 53–61 | MR

[11] P. V. Danchev, “Weakly clean and exchange UNI rings”, Ukrain. Math. J., 71 (2019)

[12] P. V. Danchev, T. Y. Lam, “Rings with unipotent units”, Publ. Math. Debrecen, 88 (2016), 449–466 | DOI | MR | Zbl

[13] P. Danchev, J. Matczuk, “$n$-Torsion clean rings”, Contemp. Math., 727 (2019), 71–82 | DOI | MR

[14] P. V. Danchev, W. Wm. McGovern, “Commutative weakly nil clean unital rings”, J. Algebra (5), 425 (2015), 410–422 | DOI | MR | Zbl

[15] A. J. Diesl, “Nil clean rings”, J. Algebra, 383 (2013), 197–211 | DOI | MR | Zbl

[16] G. Ehrlich, “Unit-regular rings”, Portugal. Math., 27 (1968), 209–212 | MR | Zbl

[17] M. Ferrero, E. Puczylowski, S. Sidki, “On the representation of an idempotent as a sum of nilpotent elements”, Canad. Math. Bull., 39 (1996), 178–185 | DOI | MR | Zbl

[18] K. R. Goodearl, Von Neumann Regular Rings, second edition, Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1991 | MR

[19] Y. Hirano, H. Tominaga, A. Yaqub, “On rings in which every element is uniquely expressible as a sum of a nilpotent element and a certain potent element”, Math. J. Okayama Univ. (1), 30 (1988), 33–40 | MR | Zbl

[20] T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Math., 131, Second Edition, Springer-Verlag, Berlin–Heidelberg–New York, 2001 | DOI | MR | Zbl

[21] W. K. Nicholson, “Lifting idempotents and exchange rings”, Trans. Amer. Math. Soc., 229 (1977), 269–278 | DOI | MR | Zbl

[22] W. K. Nicholson, “Strongly clean rings and Fitting's lemma”, Commun. Algebra, 27 (1999), 3583–3592 | DOI | MR | Zbl

[23] P. P. Nielsen, J. Šter, “Connections between unit-regularity, regularity, cleanness and strong cleanness of elements and rings”, Trans. Amer. Math. Soc., 370 (2018), 1759–1782 | DOI | MR | Zbl

[24] V. Perić, “On rings with polynomial identity $x^n-x=0$”, Publ. Inst. Math. (Beograd) (N.S.), 34(48) (1983), 165–168 | MR

[25] A. A. Tuganbaev, Rings Close to Regular, Mathematics and its Applications, 545, Kluwer Academic Publishers, Dordrecht, 2002 | MR | Zbl