Finite 2-groups with a non-Dedekind non-metacyclic norm of Abelian non-cyclic subgroups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors study finite 2-groups with non-Dedekind non-metacyclic norm NGA of Abelian non-cyclic subgroups depending on the cyclicness or the non-cyclicness of the center of a group G. The norm NGA is defined as the intersection of the normalizers of Abelian non-cyclic subgroups of G. It is found out that such 2-groups are cyclic extensions of their norms of Abelian non-cyclic subgroups. Their structure is described.
@article{BASM_2019_1_a0,
     author = {Fedir Lyman and Tetyana Lukashova and Marina Drushlyak},
     title = {Finite $2$-groups with a {non-Dedekind} non-metacyclic norm of {Abelian} non-cyclic subgroups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--19},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a0/}
}
TY  - JOUR
AU  - Fedir Lyman
AU  - Tetyana Lukashova
AU  - Marina Drushlyak
TI  - Finite $2$-groups with a non-Dedekind non-metacyclic norm of Abelian non-cyclic subgroups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 3
EP  - 19
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a0/
LA  - en
ID  - BASM_2019_1_a0
ER  - 
%0 Journal Article
%A Fedir Lyman
%A Tetyana Lukashova
%A Marina Drushlyak
%T Finite $2$-groups with a non-Dedekind non-metacyclic norm of Abelian non-cyclic subgroups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 3-19
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a0/
%G en
%F BASM_2019_1_a0
Fedir Lyman; Tetyana Lukashova; Marina Drushlyak. Finite $2$-groups with a non-Dedekind non-metacyclic norm of Abelian non-cyclic subgroups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 3-19. https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a0/

[1] Baer R., “Der Kern, eine Charakteristische Untergruppe”, Comp. Math., 1 (1934), 254–283 | MR

[2] Ballester-Bolinches A., Cossey J., Zhang L., “Generalised norms in finite soluble groups”, Journal of Algebra, 402:15 (2014), 392–405 | DOI | MR | Zbl

[3] Gong L., Zhao L., Guo X., “On the Generalized Norm of a Finite Group”, Journal of Algebra and its Applications, 15:1 (2016), 1650008, 9 pp. | DOI | MR | Zbl

[4] Lia Sh., Shenb Zh., “On the intersection of the normalizers of derived subgroups of all subgroups of a finite group”, Journal of Algebra, 323:5 (2010), 1349–1357 | DOI | MR

[5] Lukashova T. D., “Finite 2-groups with non-Dedekind norm of non-cyclic subgroups”, Proceedings of Francisk Scorina Gomel State University, 6:3 (2001), 139–150 | MR

[6] Lyman F. M., “2-groups with invariant non-cyclic subgroups”, Mathematical Notes, 4:1 (1968), 75–83 | MR

[7] Lyman F. M., “$p$-groups, all Abelian non-cyclic subgroups of which are invariant”, Doklady AN USSR, 8 (1968), 696–699 | MR

[8] Lyman F. M., Lukashova T. D., Drushlyak M. G., “On finite 2-groups with non-Dedekind norm of Abelian non-cyclic subgroups”, Matematychni Studii, 46:1 (2016), 20–28 | DOI | MR | Zbl

[9] Shen Z., Shi W., Zhang J., “Finite non-nilpotent generalizations of Hamiltonian groups”, Bull. Korean. Math. Soc., 48:6 (2011), 1147–1155 | DOI | MR | Zbl

[10] Sheriev V. A., “Finite 2-groups with complemented non-invariant subgroups”, Siberian Math. Journal, 8 (1967), 195–213 | MR

[11] Wang J., “Finite Groups with a Cyclic Norm Quotient”, Bull. Korean Math. Soc., 53:2 (2007), 479–486 | DOI | MR