Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2019_1_a0, author = {Fedir Lyman and Tetyana Lukashova and Marina Drushlyak}, title = {Finite $2$-groups with a {non-Dedekind} non-metacyclic norm of {Abelian} non-cyclic subgroups}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {3--19}, publisher = {mathdoc}, number = {1}, year = {2019}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a0/} }
TY - JOUR AU - Fedir Lyman AU - Tetyana Lukashova AU - Marina Drushlyak TI - Finite $2$-groups with a non-Dedekind non-metacyclic norm of Abelian non-cyclic subgroups JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2019 SP - 3 EP - 19 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a0/ LA - en ID - BASM_2019_1_a0 ER -
%0 Journal Article %A Fedir Lyman %A Tetyana Lukashova %A Marina Drushlyak %T Finite $2$-groups with a non-Dedekind non-metacyclic norm of Abelian non-cyclic subgroups %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2019 %P 3-19 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a0/ %G en %F BASM_2019_1_a0
Fedir Lyman; Tetyana Lukashova; Marina Drushlyak. Finite $2$-groups with a non-Dedekind non-metacyclic norm of Abelian non-cyclic subgroups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 3-19. https://geodesic-test.mathdoc.fr/item/BASM_2019_1_a0/
[1] Baer R., “Der Kern, eine Charakteristische Untergruppe”, Comp. Math., 1 (1934), 254–283 | MR
[2] Ballester-Bolinches A., Cossey J., Zhang L., “Generalised norms in finite soluble groups”, Journal of Algebra, 402:15 (2014), 392–405 | DOI | MR | Zbl
[3] Gong L., Zhao L., Guo X., “On the Generalized Norm of a Finite Group”, Journal of Algebra and its Applications, 15:1 (2016), 1650008, 9 pp. | DOI | MR | Zbl
[4] Lia Sh., Shenb Zh., “On the intersection of the normalizers of derived subgroups of all subgroups of a finite group”, Journal of Algebra, 323:5 (2010), 1349–1357 | DOI | MR
[5] Lukashova T. D., “Finite 2-groups with non-Dedekind norm of non-cyclic subgroups”, Proceedings of Francisk Scorina Gomel State University, 6:3 (2001), 139–150 | MR
[6] Lyman F. M., “2-groups with invariant non-cyclic subgroups”, Mathematical Notes, 4:1 (1968), 75–83 | MR
[7] Lyman F. M., “$p$-groups, all Abelian non-cyclic subgroups of which are invariant”, Doklady AN USSR, 8 (1968), 696–699 | MR
[8] Lyman F. M., Lukashova T. D., Drushlyak M. G., “On finite 2-groups with non-Dedekind norm of Abelian non-cyclic subgroups”, Matematychni Studii, 46:1 (2016), 20–28 | DOI | MR | Zbl
[9] Shen Z., Shi W., Zhang J., “Finite non-nilpotent generalizations of Hamiltonian groups”, Bull. Korean. Math. Soc., 48:6 (2011), 1147–1155 | DOI | MR | Zbl
[10] Sheriev V. A., “Finite 2-groups with complemented non-invariant subgroups”, Siberian Math. Journal, 8 (1967), 195–213 | MR
[11] Wang J., “Finite Groups with a Cyclic Norm Quotient”, Bull. Korean Math. Soc., 53:2 (2007), 479–486 | DOI | MR