On pseudo-injective and pseudo-projective modules
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2018), pp. 57-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we obtain characterizations of QI rings and semisimple rings using quasi-injective and pseudo-injective modules respectively. We define and construct the pseudo-injective hull of a module and we give sufficient conditions on a ring to have the following properties: every pseudo-injective module is pseudo-projective and every pseudo-projective module is pseudo-injective. We also give some properties of the big lattice of classes of modules being closed under submodules and quasi-injective hulls.
@article{BASM_2018_3_a4,
     author = {Alejandro Alvarado-Garc{\'\i}a and C\'esar Cejudo-Castilla and Tania Gabriela P\'erez-Quijano and Ivan Fernando Vilchis-Montalvo},
     title = {On pseudo-injective and pseudo-projective modules},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {57--67},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2018_3_a4/}
}
TY  - JOUR
AU  - Alejandro Alvarado-García
AU  - César Cejudo-Castilla
AU  - Tania Gabriela Pérez-Quijano
AU  - Ivan Fernando Vilchis-Montalvo
TI  - On pseudo-injective and pseudo-projective modules
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2018
SP  - 57
EP  - 67
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2018_3_a4/
LA  - en
ID  - BASM_2018_3_a4
ER  - 
%0 Journal Article
%A Alejandro Alvarado-García
%A César Cejudo-Castilla
%A Tania Gabriela Pérez-Quijano
%A Ivan Fernando Vilchis-Montalvo
%T On pseudo-injective and pseudo-projective modules
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2018
%P 57-67
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2018_3_a4/
%G en
%F BASM_2018_3_a4
Alejandro Alvarado-García; César Cejudo-Castilla; Tania Gabriela Pérez-Quijano; Ivan Fernando Vilchis-Montalvo. On pseudo-injective and pseudo-projective modules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2018), pp. 57-67. https://geodesic-test.mathdoc.fr/item/BASM_2018_3_a4/

[1] Alvarado A., Rincón H. A., Ríos J., “On the lattices of natural and conatural classes in R-Mod”, Comm. Algebra, 29:2 (2001), 541–556 | DOI | MR | Zbl

[2] Alvarado A., Cejudo C., Rincón H. A., Vilchis I. F., “Classes of modules closed under injective hulls and artinian principal ideal rings”, International Electronic Journal of Algebra, 15 (2014), 1–12 | DOI | MR | Zbl

[3] Alvarado A., Rincón H. A., Ríos J., “On big lattices of classes of $R$-modules defined by closure properties”, Advances in Ring Theory, Trends in Mathematics, Birkhäuser/Springer Basel AG, Basel, 2010, 19–36 | MR | Zbl

[4] Alvarado A., Cejudo C., Rincón H. A., Vilchis I. F., Zorilla M. G., “On boolean lattices of module classes”, Algebra Colloq., 25:2 (2018), 285–294 | DOI | MR | Zbl

[5] Byrd K. A., “Some characterizations of uniserial rings”, Math. Ann., 186 (1970), 163–170 | DOI | MR | Zbl

[6] Byrd K. A., When are quasi-injective injective?, Canad. Math. Bull., 15:4 (1972), 599–600 | DOI | MR | Zbl

[7] Cozzens J. H., “Homological properties of the ring of differential polynomials”, Bull. Amer. Math. Soc., 76 (1970), 75–79 | DOI | MR | Zbl

[8] Dauns J., Zhou Y., Classes of modules, Pure and Applied Mathematics, 281, Chapman Hall/CRC, Boca Raton, FL, 2006 | MR | Zbl

[9] Dinh H. Q., “A note on pseudo-injective modules”, Comm. Algebra, 33:3 (2005), 361–369 | DOI | MR | Zbl

[10] Er N., Singh S., Srivastava A. K., “Rings and modules which are stable under automorphisms of their injective hulls”, J. Algebra, 379 (2013), 223–229 | DOI | MR | Zbl

[11] Faith C., Algebra, v. II, Grundlehren der Matematischen Wissenschaften, 191, Ring Theory, Springer-Verlag, 1976 | DOI | MR | Zbl

[12] “Factor rings of Pseudo-Frobenius rings”, Faith C., 5 (2006), 847–854 | MR | Zbl

[13] Fuller K., “On direct representations of quasi-injectives and quasi-projectives”, Arch. Math., 20 (1969), 495–502 | DOI | MR | Zbl

[14] Golan J. S., Torsion Theories, Pitman Monographs and Surveys in Pure and Applied Mathematics, 29,, Longman Scientific Technical, New York; John Wiley Sons, Inc., 1986 | MR | Zbl

[15] Jain S. K., Singh S., “Quasi-injective and pseudo-injective modules”, Canad. Math. Bull., 18 (1975), 359–366 | DOI | MR | Zbl

[16] Koehler A., “Quasi-projective covers and direct sums”, Proc. Amer Math. Soc., 24:4 (1970), 655–658 | DOI | MR | Zbl

[17] Nicholson W. K., Yousif M. F., Quasi-Frobenius Rings, Cambridge tracts in mathematics, 158, Cambridge University Press, 2003 | MR | Zbl

[18] Singh S., “On pseudo-injective modules”, Riv. Mat. Univ. Parma, 9:2 (1968), 59–65 | MR | Zbl

[19] Singh S., Jain S. K., “On pseudo-injective modules and self pseudo-injective rings”, J. Math. Sci., 2 (1967), 23–31 | MR | Zbl

[20] Teply M. L., “Pseudo-injective modules which are not quasi-injective”, Proc. Amer. Math. Soc., 49 (1975), 305–310 | DOI | MR | Zbl

[21] Tiwary A. K., Pandeya B. M., “Pseudo-projective and pseudo-injective modules”, Indian J. Pure Appl. Math., 9 (1978), 941–949 | MR | Zbl