Transparency of Ore extensions over left σ-(S,1) rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2018), pp. 14-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let R be a ring and σ be an endomorphism of R. Recall that a ring R is said to be a left σ-(S,1) ring if for a,bR, ab=0 implies that aRb=0 and σ(a)Rb=0. In this paper we discuss a stronger type of primary decomposition (known as transparency) of a left σ-(S,1) ring R, and Ore extension R[x;σ].
@article{BASM_2018_3_a1,
     author = {Vijay Kumar Bhat and Pradeep Singh and Arun Dutta},
     title = {Transparency of {Ore} extensions over left $\sigma$-$(S,1)$ rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {14--21},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2018_3_a1/}
}
TY  - JOUR
AU  - Vijay Kumar Bhat
AU  - Pradeep Singh
AU  - Arun Dutta
TI  - Transparency of Ore extensions over left $\sigma$-$(S,1)$ rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2018
SP  - 14
EP  - 21
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2018_3_a1/
LA  - en
ID  - BASM_2018_3_a1
ER  - 
%0 Journal Article
%A Vijay Kumar Bhat
%A Pradeep Singh
%A Arun Dutta
%T Transparency of Ore extensions over left $\sigma$-$(S,1)$ rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2018
%P 14-21
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2018_3_a1/
%G en
%F BASM_2018_3_a1
Vijay Kumar Bhat; Pradeep Singh; Arun Dutta. Transparency of Ore extensions over left $\sigma$-$(S,1)$ rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2018), pp. 14-21. https://geodesic-test.mathdoc.fr/item/BASM_2018_3_a1/

[1] Bhat V. K., “Ring extensions and their quotient rings”, East-West J. Math., 9:1 (2007), 25–30 | MR | Zbl

[2] Bhat V. K., “Associated prime ideals of skew polynomial rings”, Beitrage Algebra Geom., 49:1 (2008), 277–283 | MR | Zbl

[3] Bhat V. K., “Transparent rings and their extensions”, New York J. Math., 15 (2009), 291–299 | MR | Zbl

[4] Bhat V. K., “On 2-primal Ore extensions over Noetherian $\sigma(\ast)$-rings”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 1(65):42–49 (2011) | MR

[5] Bhat V. K., “Prime ideals of $\sigma(\ast)$-rings and their extensions”, Lobachevskii J. Math., 32:1 (2011), 102–106 | DOI | MR

[6] Bhat V. K., “A note on completely prime ideals of Ore extensions”, Internat. J. Algebra Comput., 20:3 (2010), 457–463 | DOI | MR | Zbl

[7] Goodearl K. R., Warfield R. B., An introduction to Non-commutative noetherian rings, Camb. Uni. Press, 2004 | MR

[8] McConnell J. C., Robson J. C., Noncommutative Noetherian Rings, Wiley, 2001 ; revised edition, American Math. Society, 1987 | MR

[9] Kwak T. K., “Prime Radicals of skew-polynomial rings”, Int. J. Math. Sci., 2:2 (2003), 219–227 | MR | Zbl

[10] Ouyang L., “Extensions of generalized $\alpha$-rigid rings”, Int. Electron. J. Algebra, 3 (2008), 103–116 | MR | Zbl

[11] Shin G. Y., “Prime ideals and sheaf representation of a pseudo symmetric ring”, Trans. Amer. Math. Soc., 184 (1973), 43–60 | DOI | MR